Gamma Irradiation-Mediated Alterations in Chemical Composition and Antimicrobial Efficacy of Zubaidi, a Wild Edible Desert Truffle (Terfezia boudieri), with Implications for Pharmaceutical Applications




gamma irradiation, zubaidi truffle, chemical composition, antimicrobial efficacy, pharmaceutical


In exploring the impact of γ-radiation on the biochemical makeup and antimicrobial attributes of Zubaidi truffle (Terfezia boudieri), this study delved into the nuanced interplay between irradiation doses, chemical components, and antimicrobial efficacy. This research scrutinized the influence of γ-radiation on the chemical constitutes and antimicrobial characteristics of Zubaidi truffle (Terfezia boudieri). By applying four distinct doses of γ-radiation (2.5, 5.0, 7.5, and 10 kGy), the study assesses various parameters, including phenols, flavonoids, total and reduced soluble sugars, crude and soluble protein, total amino acids, antioxidant activity, and the susceptibility of examined strains to irradiated and non-irradiated truffle extracts in comparison to standard antibiotics. The findings elucidate that γ-irradiation induces moderate adjustments in the chemical composition, coupled with a dose-dependent escalation in antioxidant activity. Remarkably, irradiated truffle extracts highlight antibiotic efficacy comparable to standard antibiotics, unveiling a nuanced correlation influenced by both radiation dosage and bacterial strain.


Não há dados estatísticos.


Abdul Azeem, A., Mounir, A., & El-Shahat, A. (2022). Studying the Anti-Diabetic Effect of Gamma-Irradiated Pumpkin Seeds. Pakistan Journal of Zoology, 54(2), 851-857.

Akram, K., Ahn, J. J., Yoon, S. R., Kim, G. R., & Kwon, J. H. (2012). Quality attributes of Pleurotus eryngii following gamma irradiation. Postharvest Biology and Technology, 66, 42-47.

Akram, K., & Kwon, J. H. (2010). Food irradiation for mushrooms: A review. Journal of the Korean Society for Applied Biological Chemistry, 53(3), 257-265.

Association of Official Analytical Chemists (AOAC) (1995). Official methods of analysis (16th Ed.). Association of Official Analytical Chemists.

Baxter, J. H. (1996). Amino Acids. In L. M. L. Nollet (ed.). Handbook of Food Analysis (pp. 179-228). Marcel Dekker, Inc.

Beaulieu, M., D’Aprano, G., & Lacroix, M. (2002). Effect of dose rate of gamma irradiation on biochemical quality and browning of mushrooms Agaricus bisporus. Radiation Physics and Chemistry, 63(3-6), 311-315.

Bradai, L., Neffar, S., Amrani, K., Bissati, S., & Chenchouni, H. (2015). Ethnomycological survey of traditional usage and indigenous knowledge on desert truffles among the native Sahara Desert people of Algeria. Journal of Ethnopharmacology, 162, 31-38.

Bradford, M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254.

Duan, Z., Andronescu, M., Schutz, K., McIlwain, S., Kim, Y. J., Lee, C., Shendure, J., Fields, S., Blau, C. A., & Noble, W. S. (2010). A three-dimensional model of the yeast genome. Nature, 465(7296), 363-367.

Dubois, M., Gilles, K., Hamilton, J., Rebers, P., & Smith, F. (1956). Colorimetric method for the determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356.

El-Beltagi, H., Aly, A., & El-Desouky, W. (2019). Effect of gamma irradiation on some biochemical properties, antioxidant and antimicrobial activities of Sakouti and Bondoky dry dates fruits genotypes. Journal of Radiation Research and Applied Sciences, 12(1), 437-446.

El Enshasy, H., Elsayed, E., Aziz, R., & Wadaan, M. (2013). Mushrooms and truffles: historical biofactories for complementary medicine in Africa and in the middle East. Evidence-Based Complementary and Alternative Medicine, 2013, 620451.

Fernandes, Â., Antonio, A., Oliveira, M., Martins, A., & Ferreira, I. (2012). Effect of gamma and electron beam irradiation on the physico-chemical and nutritional properties of mushrooms: A review. Food Chemistry, 135(2), 641-650.

Gulluce, M., Sokmen, M., Sahin, F., Sokmen, A., Adiguzel, A., & Ozer, H. (2004). Biological activities of the essential oil and methanolic extract of Micromeria fruticosa (L) Druce ssp serpy llifolia (Bieb) PH davis plants from the Eastern Anatolia region of Turkey. Journal of The Science of Food and Agriculture, 84(7), 735-741.

Janakat, S. M., Al-Fakhiri, S. M., & Sallal, A. K. (2005). Evaluation of antibacterial activity of aqueous and methanolic extracts of the truffle Terfezia claveryi against Pseudomonas aeruginosa. Saudi Medical Journal, 26(6), 952-955.

Jayeraman, J. (1981). Laboratory Manual in Biochemistry. Willy Eastern Limited.

Jiang, T., Jahangir, M. M., Jiang, Z., Lu, X. & Ying, T. (2010). Influence of UV-C treatment on antioxidant capacity, antioxidant enzyme activity and texture of postharvest shiitake (Lentinus edodes) mushrooms during storage. Postharvest Biology and Technology, 56(3), 209-215.

Kovács, G., & Trappe, J. (2014). Nomenclatural history and genealogies of desert truffles. In V. Kagan-Zur, N. Roth-Bejerano, Y. Sitrit, A. Morte (eds.). Desert Truffles: phylogeny, physiology, distribution and domestication (pp. 21-37). Springer.

Marinova, D., Ribarova, F., & Atanassova, M. (2005). Total phenolic and total flavonoids in Bulgarian fruits and vegetables. Journal of The University of Chemical Technology and Metallurgy, 40(3), 255-260.

Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426-428.

Mishra, M., & Padhy, R. (2013). In Vitro Antibacterial Efficacy of 21 Indian Timber-Yielding Plants Against Multidrug-Resistant Bacteria Causing Urinary Tract Infection. Osong Public Health and Research Perspectives, 4(6), 347-357.

Morte, A., Pérez-Gilabert, M., Gutiérrez, A., Arenas, F., Marqués-Gálvez, J., Bordallo, J., Rodríguez, A., Berná, L., Lozano-Carrillo, C., & Navarro-Ródenas, A. (2017). Basic and Applied Research for Desert Truffle Cultivation. In A. Varma, R. Prasad, & N. Tuteja (eds.). Mycorrhiza: Eco-Physiology, Secondary Metabolites, Nanomaterials (pp. 23-42). Springer.

Niemira, B. A. (2008). Irradiation compared with chlorination for elimination of Escherichia coli O157:H7 internalized in lettuce leaves: influence of lettuce variety. Journal of Food Science, 73(5), M208-213.

Odueke, O., Chadd, S., Baines, R., Farag, K., & Jansson, J. (2018). Effects of gamma irradiation on the shelf-life of a dairy-like product. Radiation Physics and Chemistry, 143, 63-71.

Shavit, E. (2013). The history of desert truffle use. In V. Kagan-Zur, N. Roth-Bejerano, Y. Sitrit, A. Morte (eds.). Desert Truffles: Phylogeny, Physiology, Distribution and Domestication (pp. 217-241). Springer.

Singleton, V., Orthofer, R., & Lamuela-Raventós, R. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152-178.

Smith, M., & Bonito, G. (2012). Systematics and Ecology of Edible Ectomycorrhizal Mushrooms. In A. Zambonelli & G. M. Bonito (eds.). Edible ectomycorrhizal mushrooms: current knowledge and future prospects (pp. 19-30). Springer.

Thomas, P., Elkhateeb, W., & Daba, G. (2019). Truffle and truffle-like fungi from continental Africa. Acta Mycologica, 54(2), 1-15.

Trappe, J. M. (1988). Use of truffles and false truffles around theworld. In M. Bencivenga & B. Granetti (eds.). Atti del SecondoCongresso Internazionale sul Tartufo (pp. 19-30) Comunit montana deimonti martani e del serano.




Como Citar

ALTAMIM, E. A. (2024). Gamma Irradiation-Mediated Alterations in Chemical Composition and Antimicrobial Efficacy of Zubaidi, a Wild Edible Desert Truffle (Terfezia boudieri), with Implications for Pharmaceutical Applications. Food Science and Technology, 44.



Artigos Originais