Evaluation of the microwave-assisted enzymatic inactivation process of tomato pulp

Autores

DOI:

https://doi.org/10.5327/fst.8723

Palavras-chave:

microwaves, inactivation; enzymes, non-thermal effects

Resumo

In this study, the thermal and non-thermal effects of microwaves on the enzymatic inactivation of pectin methylesterase in the tomato pulp were validated. An amount of 30 kg of tomato pulp was subject to two different types of treatments: thermal effects and then non-thermal effects using microwaves, implementing a system that allowed simultaneous cooling of microwave heating. An experimental rotational central composite design was used to analyze the effect of the interactions of the variables involved in the process. The activity analysis of the PME enzyme, pH, titratable acidity, total soluble solid, and color was performed on both processed and non-processed tomato pulps, which showed that the heating process with thermal effect did not significantly change physical-chemical properties and were found to be more effective, reaching the enzymatic inactivation of 99% and the temperature of 80ºC after 425 s of processing. However, the non-thermal analysis with temperatures at a maximum of 40ºC attained 56.8% of enzymatic inactivation.

Downloads

Não há dados estatísticos.

Referências

Anthon, G. E., Sekine, Y., Watanabe, N., & Barrett, D. M. (2002). Thermal inactivation of pectin methylesterase, polygalacturonase, and peroxidase in tomato juice. Journal of Agricultural and Food Chemistry, 50(21), 6153-6159. https://doi.org/10.1021/jf020462r

Arjmandi, M., Otón, M., Artés, F., Artés-Hernández, F., Gómez, P. A., & Aguayo, E. (2017). Microwave flow and conventional heating effects on the physicochemical properties, bioactive compounds, and enzymatic activity of tomato puree. Journal of the Science of Food and Agriculture, 97(3), 984-990. https://doi.org/10.1002/jsfa.7824

Benlloch-Tinoco, M., Igual, M., Rodrigo, D., & Martínez-Navarrete, N. (2013). Comparison of microwaves and conventional thermal treatment on enzymes activity and antioxidant capacity of kiwifruit puree. Innovative Food Science and Emerging Technologies, 19, 166-172. https://doi.org/10.1016/j.ifset.2013.05.007

Boas, V., De Barros, E. V., Chitarra, A. B., Maluf, W. R., & Chitarra, M. I. F. (2000). Modificações texturais de tomates heterozigotos no loco alcobaça. Pesquisa Agropecuária Brasileira, 35(7), 1447-1453. https://doi.org/10.1590/S0100-204X2000000700020

Cavalcante, T., Santos, E., & Wilhelms, J. (2021). Inactivation of polyphenol oxidase by microwave and conventional heating: Investigation of thermal and non-thermal effects of focused microwaves. Food Chemistry, 340, 127911. https://doi.org/10.1016/j.foodchem.2020.127911

Debbarma, T., Thangalakshmi, S., Tadakod, M., Singh, R., & Singh, A. (2021). Comparative analysis of ohmic and conventional heat-treated carrot juice. Journal of Food Processing and Preservation, 45(9), e15687. https://doi.org/10.1111/jfpp.15687

Ferreira, S., Machado, L., Pereira, R. N., & Vicente, A. A. (2021). Unraveling the nature of ohmic heating effects in structural aspects of whey proteins: The impact of electrical and electrochemical effects. Innovative Food Science and Emerging Technologies, 74, 102831. https://doi.org/10.1016/j.ifset.2021.102831

George, D. F., Bilek, M. M., & McKenzie, D. R. (2008). Non‐Thermal effects in the microwave-induced unfolding of proteins observed by chaperone binding. Bioelectromagnetics, 29(4), 324-330. https://doi.org/10.1002/bem.20382

Guo, W., Llave, Y., Jin, Y., Fukuoka, M., & Sakai, N. (2017). Mathematical modeling of ohmic heating of two-component foods with non-uniform electric properties at high frequencies. Innovative Food Science and Emerging Technologies, 39, 63-78. https://doi.org/10.1016/J.IFSET.2016.11.005

Kubo, M. T., Siguemoto, É. S., Funcia, E. S., Augusto, P. E., Curet, S., Boillereaux, L., Sastry, S. K., & Gut, J. A. (2020). Non-thermal effects of microwave and ohmic processing on microbial and enzyme inactivation: a critical review. Current Opinion in Food Science, 35, 36-48. https://doi.org/10.1016/j.cofs.2020.01.004

Makroo, H. A., Rastogi, N. K., & Srivastava, B. (2017). Enzyme inactivation of tomato juice by ohmic heating and its effects on physicochemical characteristics of concentrated tomato paste. Journal of Food Process Engineering, 40(3), e12464. https://doi.org/10.1111/jfpe.12464

Matsui, K., Gut, J. A. W., de Oliveira, P. V., & Tadini, C. C. (2008). Inactivation kinetics of polyphenol oxidase and peroxidase in green coconut water by microwave processing. Journal of Food Engineering, 88(2), 169-176. https://doi.org/10.1016/j.jfoodeng.2008.02.003

Monteiro, C. S., Balbi, M. E., Miguel, O. G., Maria, S., & Haracemiv, C. (2008). Qualidade Nutricional E Antioxidante Do Tomate “ Tipo Italiano .” Alimentos e Nutrição, 19(1), 25-31.

Nascimento, A. dos R., Soares Júnior, M. S., Caliari, M., Fernandes, P. M., Rodrigues, J. P. M., & de Carvalho, W. T. (2013). Qualidade de tomates de mesa cultivados em sistema orgânico e convencional no estado de Goiás. Horticultura Brasileira, 31(4), 628-635. https://doi.org/10.1590/S0102-05362013000400020

Oliveira, P., Tomé, P. H., Fragiorge, E., Lopes, M., & Jesus, E. (2015). Análises de variedades de tomates (Lycopersicon esculentum MILL) CV. Débora e saladete na elaboração de catchup. Revista Científica Semana Acadêmica, 69.

Pérez, G., Vergara-Balderas, F. T., López-Malo, A., Rojas-Laguna, R., Abraham-Juárez, M. del R., & Sosa-Morales, M. E. (2016). Pasteurization treatments for tomato puree using conventional or microwave processes. Journal of Microwave Power and Electromagnetic Energy, 50(1), 35-42. https://doi.org/10.1080/08327823.2016.1157315

Pizarro-Oteíza, S., & Salazar, F. (2022). Effect of UV-LED irradiation processing on pectolytic activity and quality in tomato (Solanum lycopersicum) juice. Innovative Food Science & Emerging Technologies, 80, 103097. https://doi.org/10.1016/j.ifset.2022.103097

Ribeiro, N. G., Xavier-Santos, D., Campelo, P. H., Guimarães, J. T., Pimentel, T. C., Duarte, M. C. K., & Cruz, A. G. (2022). Dairy foods and novel thermal and non-thermal processing: A bibliometric analysis. Innovative Food Science & Emerging Technologies, 76, 102934. https://doi.org/10.1016/j.ifset.2022.102934

Rodríguez, C., Salazar-González, C., Sosa-Morales, M., & López-Malo, A. (2011). Pasteurization of mango puree using microwaves. 45th Annual Symposium of IMPI.

Salazar-González, C. Y., Martin-Gonzalez, M. F., Vergara-Balderas, F. T., López-Malo, A., & Sosa-Morales, M. E. (2014). Physical-Chemical and Microbiological Stability during Refrigerated Storage of Microwave-Pasteurized Guava Nectar. Focusing on Modern Food Industry, 3, 43-51. https://doi.org/10.14355/fmfi.2014.03.006

Shamis, Y., Croft, R., Taube, A., Crawford, R. J., & Ivanova, E. P. (2012). Review of the specific effects of microwave radiation on bacterial cells. Applied Microbiology and Biotechnology, 96(2), 319-325. https://doi.org/10.1007/S00253-012-4339-Y

Tajchakavit, S., & Ramaswamy, H. S. (1995). Continuous-flow microwave heating of orange juice: Evidence of nonthermal effects. Journal of Microwave Power and Electromagnetic Energy, 30(3), 141-148. https://doi.org/10.1080/08327823.1995.11688270

Tajchakavit, S., & Ramaswamy, H. S. (1997). Thermal vs. microwave inactivation kinetics of pectin methylesterase in orange juice under batch mode heating conditions. LWT - Food Science and Technology, 30(1), 85-93. https://doi.org/10.1006/fstl.1996.0136

Downloads

Publicado

2023-12-05

Como Citar

FONSECA, I. J. M., GUILHERME, E., & SILVEIRA JUNIOR, V. (2023). Evaluation of the microwave-assisted enzymatic inactivation process of tomato pulp. Food Science and Technology, 43. https://doi.org/10.5327/fst.8723

Edição

Seção

Artigos Originais