Evaluation of the microwave-assisted enzymatic inactivation process of tomato pulp
DOI:
https://doi.org/10.5327/fst.8723Palavras-chave:
microwaves, inactivation; enzymes, non-thermal effectsResumo
In this study, the thermal and non-thermal effects of microwaves on the enzymatic inactivation of pectin methylesterase in the tomato pulp were validated. An amount of 30 kg of tomato pulp was subject to two different types of treatments: thermal effects and then non-thermal effects using microwaves, implementing a system that allowed simultaneous cooling of microwave heating. An experimental rotational central composite design was used to analyze the effect of the interactions of the variables involved in the process. The activity analysis of the PME enzyme, pH, titratable acidity, total soluble solid, and color was performed on both processed and non-processed tomato pulps, which showed that the heating process with thermal effect did not significantly change physical-chemical properties and were found to be more effective, reaching the enzymatic inactivation of 99% and the temperature of 80ºC after 425 s of processing. However, the non-thermal analysis with temperatures at a maximum of 40ºC attained 56.8% of enzymatic inactivation.
Downloads
Referências
Anthon, G. E., Sekine, Y., Watanabe, N., & Barrett, D. M. (2002). Thermal inactivation of pectin methylesterase, polygalacturonase, and peroxidase in tomato juice. Journal of Agricultural and Food Chemistry, 50(21), 6153-6159. https://doi.org/10.1021/jf020462r
Arjmandi, M., Otón, M., Artés, F., Artés-Hernández, F., Gómez, P. A., & Aguayo, E. (2017). Microwave flow and conventional heating effects on the physicochemical properties, bioactive compounds, and enzymatic activity of tomato puree. Journal of the Science of Food and Agriculture, 97(3), 984-990. https://doi.org/10.1002/jsfa.7824
Benlloch-Tinoco, M., Igual, M., Rodrigo, D., & Martínez-Navarrete, N. (2013). Comparison of microwaves and conventional thermal treatment on enzymes activity and antioxidant capacity of kiwifruit puree. Innovative Food Science and Emerging Technologies, 19, 166-172. https://doi.org/10.1016/j.ifset.2013.05.007
Boas, V., De Barros, E. V., Chitarra, A. B., Maluf, W. R., & Chitarra, M. I. F. (2000). Modificações texturais de tomates heterozigotos no loco alcobaça. Pesquisa Agropecuária Brasileira, 35(7), 1447-1453. https://doi.org/10.1590/S0100-204X2000000700020
Cavalcante, T., Santos, E., & Wilhelms, J. (2021). Inactivation of polyphenol oxidase by microwave and conventional heating: Investigation of thermal and non-thermal effects of focused microwaves. Food Chemistry, 340, 127911. https://doi.org/10.1016/j.foodchem.2020.127911
Debbarma, T., Thangalakshmi, S., Tadakod, M., Singh, R., & Singh, A. (2021). Comparative analysis of ohmic and conventional heat-treated carrot juice. Journal of Food Processing and Preservation, 45(9), e15687. https://doi.org/10.1111/jfpp.15687
Ferreira, S., Machado, L., Pereira, R. N., & Vicente, A. A. (2021). Unraveling the nature of ohmic heating effects in structural aspects of whey proteins: The impact of electrical and electrochemical effects. Innovative Food Science and Emerging Technologies, 74, 102831. https://doi.org/10.1016/j.ifset.2021.102831
George, D. F., Bilek, M. M., & McKenzie, D. R. (2008). Non‐Thermal effects in the microwave-induced unfolding of proteins observed by chaperone binding. Bioelectromagnetics, 29(4), 324-330. https://doi.org/10.1002/bem.20382
Guo, W., Llave, Y., Jin, Y., Fukuoka, M., & Sakai, N. (2017). Mathematical modeling of ohmic heating of two-component foods with non-uniform electric properties at high frequencies. Innovative Food Science and Emerging Technologies, 39, 63-78. https://doi.org/10.1016/J.IFSET.2016.11.005
Kubo, M. T., Siguemoto, É. S., Funcia, E. S., Augusto, P. E., Curet, S., Boillereaux, L., Sastry, S. K., & Gut, J. A. (2020). Non-thermal effects of microwave and ohmic processing on microbial and enzyme inactivation: a critical review. Current Opinion in Food Science, 35, 36-48. https://doi.org/10.1016/j.cofs.2020.01.004
Makroo, H. A., Rastogi, N. K., & Srivastava, B. (2017). Enzyme inactivation of tomato juice by ohmic heating and its effects on physicochemical characteristics of concentrated tomato paste. Journal of Food Process Engineering, 40(3), e12464. https://doi.org/10.1111/jfpe.12464
Matsui, K., Gut, J. A. W., de Oliveira, P. V., & Tadini, C. C. (2008). Inactivation kinetics of polyphenol oxidase and peroxidase in green coconut water by microwave processing. Journal of Food Engineering, 88(2), 169-176. https://doi.org/10.1016/j.jfoodeng.2008.02.003
Monteiro, C. S., Balbi, M. E., Miguel, O. G., Maria, S., & Haracemiv, C. (2008). Qualidade Nutricional E Antioxidante Do Tomate “ Tipo Italiano .” Alimentos e Nutrição, 19(1), 25-31.
Nascimento, A. dos R., Soares Júnior, M. S., Caliari, M., Fernandes, P. M., Rodrigues, J. P. M., & de Carvalho, W. T. (2013). Qualidade de tomates de mesa cultivados em sistema orgânico e convencional no estado de Goiás. Horticultura Brasileira, 31(4), 628-635. https://doi.org/10.1590/S0102-05362013000400020
Oliveira, P., Tomé, P. H., Fragiorge, E., Lopes, M., & Jesus, E. (2015). Análises de variedades de tomates (Lycopersicon esculentum MILL) CV. Débora e saladete na elaboração de catchup. Revista Científica Semana Acadêmica, 69.
Pérez, G., Vergara-Balderas, F. T., López-Malo, A., Rojas-Laguna, R., Abraham-Juárez, M. del R., & Sosa-Morales, M. E. (2016). Pasteurization treatments for tomato puree using conventional or microwave processes. Journal of Microwave Power and Electromagnetic Energy, 50(1), 35-42. https://doi.org/10.1080/08327823.2016.1157315
Pizarro-Oteíza, S., & Salazar, F. (2022). Effect of UV-LED irradiation processing on pectolytic activity and quality in tomato (Solanum lycopersicum) juice. Innovative Food Science & Emerging Technologies, 80, 103097. https://doi.org/10.1016/j.ifset.2022.103097
Ribeiro, N. G., Xavier-Santos, D., Campelo, P. H., Guimarães, J. T., Pimentel, T. C., Duarte, M. C. K., & Cruz, A. G. (2022). Dairy foods and novel thermal and non-thermal processing: A bibliometric analysis. Innovative Food Science & Emerging Technologies, 76, 102934. https://doi.org/10.1016/j.ifset.2022.102934
Rodríguez, C., Salazar-González, C., Sosa-Morales, M., & López-Malo, A. (2011). Pasteurization of mango puree using microwaves. 45th Annual Symposium of IMPI.
Salazar-González, C. Y., Martin-Gonzalez, M. F., Vergara-Balderas, F. T., López-Malo, A., & Sosa-Morales, M. E. (2014). Physical-Chemical and Microbiological Stability during Refrigerated Storage of Microwave-Pasteurized Guava Nectar. Focusing on Modern Food Industry, 3, 43-51. https://doi.org/10.14355/fmfi.2014.03.006
Shamis, Y., Croft, R., Taube, A., Crawford, R. J., & Ivanova, E. P. (2012). Review of the specific effects of microwave radiation on bacterial cells. Applied Microbiology and Biotechnology, 96(2), 319-325. https://doi.org/10.1007/S00253-012-4339-Y
Tajchakavit, S., & Ramaswamy, H. S. (1995). Continuous-flow microwave heating of orange juice: Evidence of nonthermal effects. Journal of Microwave Power and Electromagnetic Energy, 30(3), 141-148. https://doi.org/10.1080/08327823.1995.11688270
Tajchakavit, S., & Ramaswamy, H. S. (1997). Thermal vs. microwave inactivation kinetics of pectin methylesterase in orange juice under batch mode heating conditions. LWT - Food Science and Technology, 30(1), 85-93. https://doi.org/10.1006/fstl.1996.0136