Encapsulation of beetroot extract (Beta vulgaris L.) obtained by internal and external ionic gelation: a comparative study

Autores

DOI:

https://doi.org/10.5327/fst.00225

Palavras-chave:

alginate, encapsulation, controlled release, food additive

Resumo

Natural pigments, like betalains found in beets, are sensitive to environmental conditions, which may impact their reactivity and shelf-life. Microencapsulation is an attractive alternative for delivering these compounds, offering protection through polymeric microcapsules. The aim of this study was to compare two ionic gelation methodologies, external (EG) and internal gelation (IG), in the microencapsulation of beet aqueous extract. Particles were obtained by mixing sodium alginate with the aqueous extract of beetroot and crosslinking with calcium chloride solution using the extrusion method. Encapsulation characteristics and physical, morphological features were evaluated. The particles showed 10.72 and 89.90% encapsulation efficiency for EG and IG, respectively. Loading capacity was 18.90% for EG and 25.60% for IG. Those IG particles showed superior water absorption capacity during rehydration. Texture analysis indicated that EG particles showed greater hardness. Release kinetics indicated that EG particles followed the Korsmeyer-Peppas model, while IG particles followed the Higuchi model. Thus, the appropriate encapsulation technique should be selected depending on the food matrix to be used and the specific objective of delivering the active encapsulated molecules.

Downloads

Não há dados estatísticos.

Referências

Alexandre, J. B., Barroso, T. L. C. T, Oliveira, M. A., Mendes, F. R. S., Costa, J. M. C., Moreira, R. A., & Furtado, R. F. (2019). Cross-linked coacervates of cashew gum and gelatin in the encapsulation of pequi oil. Ciência Rural, 49(12), 1-12. https://doi.org/10.1590/0103-8478cr20190079

Barroso, T. L. C. T., Alexandre, J. de B., Silva, L. C. da, Castelo, R. M., Ribeiro, L. B., Furtado, R. F., & Zambelli, R. A. (2021). Tecnologia de encapsulamento na área de alimentos: Uma revisão. Research, Society and Development, 10, e6210716240.

Basu, S., Banerjee, D., Chowdhury, R., & Bhattacharya, P. (2018). Controlled release of microencapsulated probiotics in food matrix. Journal of Food Engineering, 238, 61-69. https://doi.org/10.1016/j.jfoodeng.2018.06.005

Belščak-Cvitanović, A., Bušić, A., Barišić, L., Vrsaljko, D., Karlović, S., Špoljarić, I., Vojvodić, A., Mršić, G., & Komes, D. (2016). Emulsion templated microencapsulation of dandelion (Taraxacum officinale L.) polyphenols and β-carotene by ionotropic gelation of alginate and pectin. Food Hydrocolloids, 57, 139-152. https://doi.org/10.1016/j.foodhyd.2016.01.020

Budinčić, J. M., Petrović, L., Đekić, L., Fraj, J., Bučko, S., Katona, J., & Spasojević, L. (2021). Study of vitamin E microencapsulation and controlled release from chitosan/sodium lauryl ether sulfate microcapsules. Carbohydrate Polymers, 251, 116988. https://doi.org/10.1016/j.carbpol.2020.116988

Calderón-Oliver, M., Pedroza-Islas, R., Escalona-Buendía, H. B., Pedraza-Chaverri, J., & Ponce-Alquicira, E. (2017). Comparative study of the microencapsulation by complex coacervation of nisin in combination with an avocado antioxidant extract. Food Hydrocolloids, 62, 49-57. https://doi.org/10.1016/j.foodhyd.2016.07.028

Camacho, D. H., Uy, S. J. Y., Cabrera, M. J. F., Lobregas, M. O. S., & Fajardo, T. J. M. C. (2019). Encapsulation of folic acid in copper-alginate hydrogels and it’s slow in vitro release in physiological pH condition. Food Research International, 119, 15-22. https://doi.org/10.1016/j.foodres.2019.01.053

Castelo, R. M., da Silva, L.C., Sousa, J. R., Magalhães, H. C. R., & Furtado, R. F. (2020). Development and Characterization of Pequi Oil (Caryocar coriaceum wittm.) Microparticles by Vibration Nozzle Encapsulation. Macromolecular Symposia, 394(1), 2000061. https://doi.org/10.1002/masy.202000061

Celli, G. B., & Brooks, M. S. L. (2017). Impact of extraction and processing conditions on betalains and comparison of properties with anthocyanins — A current review. Food Research International, 100(Part 3), 501-509. https://doi.org/10.1016/j.foodres.2016.08.034

Costa, P. J. C. (2002). Avaliação in vitro da lioequivalência de formulações farmacêuticas. Revista Brasileira de Ciências Farmacêuticas, 38(2), 141-153. https://doi.org/10.1590/S1516-93322002000200003

da Silva Carvalho, A. G., da Costa Machado, M. T., de Freitas Queiroz Barros, H. D., Cazarin, C. B. B., Maróstica Junior, M. R., & Hubinger, M. D. (2019). Anthocyanins from jussara (Euterpe edulis Martius) extract carried by calcium alginate beads pre-prepared using ionic gelation. Powder Technology, 345, 283-291. https://doi.org/10.1016/j.powtec.2019.01.016

Da Silveira Cáceres de Menezes, M. F., Rodrigues, L. Z., Cavalheiro, C. P., Etchepare, M. A., & Ragagnin de Menezes, C. (2015). Microencapsulação de probióticos por gelificação iônica externa utilizando pectina. Ciência e Natureza, 37(5), 30-37. https://doi.org/10.5902/2179-460X19712

Dalponte Dallabona, I., de Lima, G. G., Cestaro, B. I., Tasso, I. de S., Paiva, T. S., Laureanti, E. J. G., Jorge, L. M. de M., da Silva, B. J. G., Helm, C. V., Mathias, A. L., & Jorge, R. M. M. (2020). Development of alginate beads with encapsulated jabuticaba peel and propolis extracts to achieve a new natural colorant antioxidant additive. International Journal of Biological Macromolecules, 163, 1421-1432. https://doi.org/10.1016/j.ijbiomac.2020.07.256

Deladino, L., Anbinder, P. S., Navarro, A. S., & Martino, M. N. (2008). Encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydrate Polymers, 71(1), 126-134. https://doi.org/10.1016/j.carbpol.2007.05.030

Dodero, A., Pianella, L., Vicini, S., Alloisio, M., Ottonelli, M., & Castellano, M. (2019). Alginate-based hydrogels prepared via ionic gelation: An experimental design approach to predict the crosslinking degree. European Polymer Journal, 118, 586-594. https://doi.org/10.1016/j.eurpolymj.2019.06.028

Ferreira, M., Pradela Filho, L., Santos, A., Takeuchi, R., & Assunção, R. (2019). Avaliação do perfil de liberação do fármaco ibuprofeno em membranas simétricas e assimétricas de acetato de celulose: efeito da morfologia. Química Nova, 42(8), 823-830. https://doi.org/10.21577/0100-4042.20170409

Günter, E. A., Martynov, V. V., Belozerov, V. S., Martinson, E. A., & Litvinets, S. G. (2020). Characterization and swelling properties of composite gel microparticles based on the pectin and κ-carrageenan. International Journal of Biological Macromolecules, 164, 2232-2239. https://doi.org/10.1016/j.ijbiomac.2020.08.024

Kouamé, K. J. E. P., Bora, A. F. M., Li, X., Sun, Y., & Liu, L. (2021). Novel trends and opportunities for microencapsulation of flaxseed oil in foods: A review. Journal of Functional Foods, 87, 104812. https://doi.org/10.1016/j.jff.2021.104812

Kurozawa, L. E., & Hubinger, M. D. (2017). Hydrophilic food compounds encapsulation by ionic gelation. Current Opinion in Food Science, 15, 50-55. https://doi.org/10.1016/j.cofs.2017.06.004

Kurtulbaş, E., Albarri, R., Torun, M., & Şahin, S. (2022). Encapsulation of Moringa oleifera leaf extract in chitosan-coated alginate microbeads produced by ionic gelation. Food Bioscience, 50(Part B), 102158. https://doi.org/10.1016/j.fbio.2022.102158

Labus, K., Trusek-Holownia, A., Semba, D., Ostrowska, J., Tynski, P., & Bogusz, J. (2018). Biodegradable polylactide and thermoplastic starch blends as drug release device – mass transfer study. Polish Journal of Chemical Technology, 20, 75-80. https://doi.org/10.2478/pjct-2018-0011

Li, L., Zhang, M., Feng, X., Yang, H., Shao, M., Huang, Y., Li, Y., & Teng, F. (2023). Internal/external aqueous-phase gelation treatment of soybean lipophilic protein W/O/W emulsions: Improvement in microstructure, interfacial properties, physicochemical stability, and digestion characteristics. Food Hydrocolloids, 136(Part A), 108257. https://doi.org/10.1016/j.foodhyd.2022.108257

Li, L., Zhao, J., Sun, Y., Yu, F., & Ma, J. (2019). Ionically cross-linked sodium alginate/ĸ-carrageenan double-network gel beads with low-swelling, enhanced mechanical properties, and excellent adsorption performance. Chemical Engineering Journal, 372, 1091-1103. https://doi.org/10.1016/j.cej.2019.05.007

Li, X., Zhang, Z. H., Qiao, J., Qu, W., Wang, M. S., Gao, X., Zhang, C., Brennan, C. S., & Qi, X. (2022). Improvement of betalains stability extracted from red dragon fruit peel by ultrasound-assisted microencapsulation with maltodextrin. Ultrasonics Sonochemistry, 82, 105897. https://doi.org/10.1016/j.ultsonch.2021.105897

Lin, D., Kelly, A. L., & Miao, S. (2021). Alginate-based emulsion micro-gel particles produced by an external/internal O/W/O emulsion-gelation method: Formation, suspension rheology, digestion, and application to gel-in-gel beads. Food Hydrocolloids, 120, 106926. https://doi.org/10.1016/j.foodhyd.2021.106926

Luiza Koop, B., Nascimento da Silva, M., Diniz da Silva, F., Thayres dos Santos Lima, K., Santos Soares, L., José de Andrade, C., Ayala Valencia, G., Rodrigues & Monteiro, A. (2022). Flavonoids, anthocyanins, betalains, curcumin, and carotenoids: Sources, classification and enhanced stabilization by encapsulation and adsorption. Food Research International, 153, 110929. https://doi.org/10.1016/j.foodres.2021.110929

Lupo, B., Maestro, A., Gutiérrez, J.M., & González, C. (2015). Characterization of alginate beads with encapsulated cocoa extract to prepare functional food: Comparison of two gelation mechanisms. Food Hydrocolloids, 49, 25-34. https://doi.org/10.1016/j.foodhyd.2015.02.023

Naranjo-Durán, A. M., Quintero-Quiroz, J., Rojas-Camargo, J., & Ciro-Gómez, G. L. (2021). Modified-release of encapsulated bioactive compounds from annatto seeds produced by optimized ionic gelation techniques. Scientific Reports, 11, 1317. https://doi.org/10.1038/s41598-020-80119-1

Noor, A., Al Murad, M., Jaya Chitra, A., Babu, S. & Govindarajan, S. (2022). Alginate based encapsulation of polyphenols of Piper betel leaves: Development, stability, bio-accessibility and biological activities. Food Bioscience, 47, 101715. https://doi.org/10.1016/j.fbio.2022.101715

Otálora, M. C., Carriazo, J. G., Osorio, C., & Nazareno, M. A. (2018). Encapsulation of cactus (Opuntia megacantha) betaxanthins by ionic gelation and spray drying: A comparative study. Food Research International, 111, 423–430. https://doi.org/10.1016/j.foodres.2018.05.058

Rajmohan, D., & Bellmer, D. (2019). Characterization of Spirulina-Alginate Beads Formed Using Ionic Gelation. International Journal of Food Science, 2019, 7101279. https://doi.org/10.1155%2F2019%2F7101279

Riley, N. A. (1941). Projection Sphericity. Journal of Sedimentary Petrology, 11(2), 94-95. https://doi.org/10.1306/D426910C-2B26-11D7-8648000102C1865D

Rodríguez-Félix, F., Corte-Tarazón, J. A., Rochín-Wong, S., Fernández-Quiroz, J. D., Garzón-García, A. M., Santos-Sauceda, I., Plascencia-Martínez, D. F., Chan-Chan, L. H., Vásquez-López, C., Barreras-Urbina, C. G., Olguin-Moreno, A., & Tapia-Hernández, J. A. (2022). Physicochemical, structural, mechanical and antioxidant properties of zein films incorporated with no-ultrafiltered and ultrafiltered betalains extract from the beetroot (Beta vulgaris) bagasse with potential application as active food packaging. Journal of Food Engineering, 334, 111153. https://doi.org/10.1016/j.jfoodeng.2022.111153

Shaddel, R., Hesari, J., Azadmard-Damirchi, S., Hamishehkar, H., Fathi-Achachlouei, B., & Huan, Q. (2018). Use of gelatin and gum Arabic for encapsulation of black raspberry anthocyanins by complex coacervation. International Journal of Biological Macromolecules, 107(Part B), 1800-1810. https://doi.org/10.1016/j.ijbiomac.2017.10.044

Silva, L. C., Castelo, R. M., Magalhães, H. C. R., Furtado, R. F., Cheng, H. N., Biswas, A., & Alves, C. R. (2022). Characterization and controlled release of pequi oil microcapsules for yogurt application. LWT - Food Science and Technology, 157, 113105. https://doi.org/10.1016/j.lwt.2022.113105

Somacal, S., Somacal, S., Pinto, V. S., de Deus, C., Vendruscolo, R. G., de Almeida, T. M., Wager, R., Mazutti, M. A., & de Menezes, C. R. (2022). Strategy to increase the lipid stability of the microbial oil produced by Umbelopsis isabellina for food purposes: Use of microencapsulation by external ionic gelation. Food Research International, 152, 110907. https://doi.org/10.1016/j.foodres.2021.110907

Wang, X., Yin, H., Chen, Z., Xia, L. (2020). Epoxy resin/ethyl cellulose microcapsules prepared by solvent evaporation for repairing microcracks: Particle properties and slow-release performance. Materials Today Communications, 22, 100854. https://doi.org/10.1016/j.mtcomm.2019.100854

Wang, W., Sun, R., Xia, Q. (2023). Influence of gelation of internal aqueous phase on in vitro controlled release of W1/O/W2 double emulsions-filled alginate hydrogel beads. Journal of Food Engineering, 337, 111246. https://doi.org/10.1016/j.jfoodeng.2022.111246

Waqas, M. K., Safdar, S., Buabeid, M., Ashames, A., Akhtar, M., & Murtaza, G. (2022). Alginate-coated chitosan nanoparticles for pH-dependent release of tamoxifen citrate. Journal of Experimental Nanoscience, 17(1), 522-534. https://doi.org/10.1080/17458080.2022.2112919

Wongverawattanakul, C., Suklaew, P. on, Chusak, C., Adisakwattana, S., & Thilavech, T. (2022). Encapsulation of Mesona chinensis Benth Extract in Alginate Beads Enhances the Stability and Antioxidant Activity of Polyphenols under Simulated Gastrointestinal Digestion. Foods, 11(15), 2378. https://doi.org/10.3390/foods11152378

Xu, J. B., Bartley, J. P., & Johnson, R. A. (2003). Preparation and characterization of alginate-carrageenan hydrogel films crosslinked using a water-soluble carbodiimide (WSC). Journal of Membrane Science, 218(1-2), 131-146. https://doi.org/10.1016/S0376-7388(03)00165-0

Yang, W., Kaimainen, M., Järvenpää, E., Sandell, M., Huopalahti, R., Yang, B., & Laaksonen, O. (2021). Red beet (Beta vulgaris) betalains and grape (Vitis vinifera) anthocyanins as colorants in white currant juice – Effect of storage on degradation kinetics, color stability and sensory properties. Food Chemistry, 348, 128995. https://doi.org/10.1016/j.foodchem.2020.128995

Yousefi, M., Khanniri, E., Shadnoush, M., Khorshidian, N., & Mortazavian, A. M. (2020). Development, characterization and in vitro antioxidant activity of chitosan-coated alginate microcapsules entrapping Viola odorata Linn. extract. International Journal of Biological Macromolecules, 163, 44-54. https://doi.org/10.1016/j.ijbiomac.2020.06.250

Zanetti, B. G., Soldi, V., & Lemos-Senna, E. (2002). Efeito da adição de polietilenoglicóis nas formulações de microesferas de acetobutirato de celulose sobre a eficiência de encapsulação da carbamazepina e morfologia das partículas. Revista Brasileira de Ciência do Solo, 38(2), 229-236. https://doi.org/10.1590/S1516-93322002000200012

Zhang, H., Tan, S., Gan, H., Zhang, H., Xia, N., Jiang, L., Ren, H., & Zhang, X. (2023). Investigation of the formation mechanism and β-carotene encapsulation stability of emulsion gels based on egg yolk granules and sodium alginate. Food Chemistry, 400, 134032. https://doi.org/10.1016/j.foodchem.2022.134032

Zhang, R., Zhou, L., Li, J., Oliveira, H., Yang, N., Jin, W., Zhu, Z., Li, S., & He, J. (2020). Microencapsulation of anthocyanins extracted from grape skin by emulsification/internal gelation followed by spray/freeze-drying techniques: Characterization, stability and bioaccessibility. LWT - Food Science and Technology, 123, 109097. https://doi.org/10.1016/j.lwt.2020.109097

Zhu, Z., Hu, J., & Zhong, Z. (2022). Preparation and characterization of long-term antibacterial and pH-responsive Polylactic acid/Octenyl succinic anhydride-chitosan @ tea tree oil microcapsules. International Journal of Biological Macromolecules, 220, 1318-1328. https://doi.org/10.1016/j.ijbiomac.2022.09.038

Downloads

Publicado

2024-04-02

Como Citar

ALEXANDRE, J. de B., BARROSO, T. L. C. T., SILVA, L. C. da, CASTELO, R. M., FREIRE, G. A., NASCIMENTO, A. B., CHENG, H. N., BISWAS, A., BRUNO, L. M., & FURTADO, R. F. (2024). Encapsulation of beetroot extract (Beta vulgaris L.) obtained by internal and external ionic gelation: a comparative study. Food Science and Technology, 44. https://doi.org/10.5327/fst.00225

Edição

Seção

Artigos Originais