Flavor Precursor and Volatile Compounds Formation of Unfermented Cocoa Beans Hydrolyzed by Papain

Autores

  • Nur Syamsi IBRAHIM Gadjah Mada University, Faculty of Agricultural Technology, Department of Food and Agricultural Product Technology, Bulaksumur, Yogyakarta, Indonesia. https://orcid.org/0009-0005-2881-6102
  • Chusnul HIDAYAT Gadjah Mada University, Faculty of Agricultural Technology, Department of Food and Agricultural Product Technology, Bulaksumur, Yogyakarta, Indonesia. https://orcid.org/0000-0001-6540-5306
  • Tyas UTAMI Gadjah Mada University, Faculty of Agricultural Technology, Department of Food and Agricultural Product Technology, Bulaksumur, Yogyakarta, Indonesia. https://orcid.org/0000-0003-3600-6060
  • Rini YANTI Gadjah Mada University, Faculty of Agricultural Technology, Department of Food and Agricultural Product Technology, Bulaksumur, Yogyakarta, Indonesia. https://orcid.org/0000-0002-1504-6592
  • Lucia WITASARI Gadjah Mada University, Faculty of Agricultural Technology, Department of Food and Agricultural Product Technology, Bulaksumur, Yogyakarta, Indonesia. https://orcid.org/0000-0001-9614-4540

DOI:

https://doi.org/10.5327/fst.00224%20

Palavras-chave:

enzymatic hydrolysis, papain, flavor precursor, unfermented cocoa beans var.forastero

Resumo

Fermentation is notably crucial stage in the production of cocoa flavor precursors. Nevertheless, some cocoa plantations in Indonesia skip fermentation as the raw material is relatively small, and the fermentation period is extremely long. This study aimed to improve the flavor precursors in unfermented cocoa beans (var. forastero). Unfermented cocoa beans were hydrolyzed using papain at different concentrations and incubation times. The conditions to obtain the highest degree of hydrolysis were 3.3 U/mL (papain conc.) at 10 h incubation. After papain treatment, it exhibited lower reducing sugars and polyphenol content than unfermented cocoa beans. Besides, hydrophobic amino acids such as phenylalanine, valine, leucine, and isoleucine was increased. After roasting, volatile compounds for chocolate aroma were also presented. However, pyrazines, aldehydes, and esters, were still less than those in fermented cocoa beans. The results proved that the papain hydrolysis of unfermented cocoa beans can improve their flavor precursors and volatile compounds.

Downloads

Não há dados estatísticos.

Referências

Afoakwa, E. O., Paterson, A., Fowler, M., & Ryan, A. (2008). Flavor formation and character in cocoa and chocolate: A critical review. Critical Reviews in Food Science and Nutrition, 48(9), 840-857. https://doi.org/10.1080/10408390701719272

Afoakwa, E. O., Paterson, A., Fowler, M., & Ryan, A. (2009). Matrix effects on flavour volatiles release in dark chocolates varying in particle size distribution and fat content using GC-mass spectrometry and GC-olfactometry. Food Chemistry, 113(1), 208-215. https://doi.org/10.1016/j.foodchem.2008.07.088

Amri, E., & Mamboya, F. (2012). Papain, a plant enzyme of biological importance: A review. American Journal of Biochemistry and Biotechnology, 8(2), 99-104. https://doi.org/10.3844/ajbbsp.2012.99.104

Aprotosoaie, A. C., Luca, S. V., & Miron, A. (2016). Flavor Chemistry of Cocoa and Cocoa Products-An Overview. Comprehensive Reviews in Food Science and Food Safety, 15(1), 73-91. https://doi.org/10.1111/1541-4337.12180

Assi-Clair, B. J., Koné, M. K., Kouamé, K., Lahon, M. C., Berthiot, L., Durand, N., Lebrun, M., Julien-Ortiz, A., Maraval, I., Boulanger, R., & Guéhi, T. S. (2019). Effect of aroma potential of Saccharomyces cerevisiae fermentation on the volatile profile of raw cocoa and sensory attributes of chocolate produced thereof. European Food Research and Technology, 245, 1459-1471. https://doi.org/10.1007/s00217-018-3181-6

Balcázar-Zumaeta, C. R., Castro-Alayo, E. M., Cayo-Colca, I. S., Idrogo-Vásquez, G., & Muñoz-Astecker, L. D. (2023). Metabolomics during the spontaneous fermentation in cocoa (Theobroma cacao L.): An exploraty review. Food Research International, 163, 112190. https://doi.org/10.1016/j.foodres.2022.112190

Bonvehí, J. S. (2005). Investigation of aromatic compounds in roasted cocoa powder. European Food Research and Technology, 221(1-2), 19-29. https://doi.org/10.1007/s00217-005-1147-y

Calvo, A. M., Botina, B. L., García, M. C., Cardona, W. A., Montenegro, A. C., & Criollo, J. (2021). Dynamics of cocoa fermentation and its effect on quality. Scientific Reports, 11(1), 16746. https://doi.org/10.1038/s41598-021-95703-2

Castro-Alayo, E. M., Idrogo-Vásquez, G., Siche, R., & Cardenas-Toro, F. P. (2019). Formation of aromatic compounds precursors during fermentation of Criollo and Forastero cocoa. Heliyon, 5(1), e01157. https://doi.org/10.1016/j.heliyon.2019.e01157

Colonges, K., Jimenez, J. C., Saltos, A., Seguine, E., Loor Solorzano, R. G., Fouet, O., Argout, X., Assemat, S., Davrieux, F., Cros, E., Lanaud, C., & Boulanger, R. (2022). Integration of GWAS, metabolomics, and sensorial analyses to reveal novel metabolic pathways involved in cocoa fruity aroma GWAS of fruity aroma in Theobroma cacao. Plant Physiology and Biochemistry, 171, 213-225. https://doi.org/10.1016/j.plaphy.2021.11.006

Cupp-Enyard, C., & Aldrich, S. (2008). Sigma’s non-specific protease activity assay - Casein as a substrate. Journal of Visualized Experiments, (19), 899. https://doi.org/10.3791/899

Díaz, I., & Martinez, M. (2013). Plant C1A Cysteine Peptidases in Germination and Senescence. In N. D. Rawlings & G. Salvesen (eds.). Handbook of Proteolytic Enzymes (Vol. 2, pp. 1852-1858). Elsevier. https://doi.org/10.1016/B978-0-12-382219-2.00417-8

Fang, Y., Li, R., Chu, Z., Zhu, K., Gu, F., & Zhang, Y. (2020). Chemical and flavor profile changes of cocoa beans (Theobroma cacao L.) during primary fermentation. Food Science and Nutrition, 8(8), 4121-4133. https://doi.org/10.1002/fsn3.1701

Febrianto, N. A., & Zhu, F. (2022). Composition of methylxanthines, polyphenols, key odorant volatiles and minerals in 22 cocoa beans obtained from different geographic origins. LWT, 153, 112395. https://doi.org/10.1016/j.lwt.2021.112395

Figueroa-Hernández, C., Mota-Gutierrez, J., Ferrocino, I., Hernández-Estrada, Z. J., González-Ríos, O., Cocolin, L., & Suárez-Quiroz, M. L. (2019). The challenges and perspectives of the selection of starter cultures for fermented cocoa beans. International Journal of Food Microbiology, 301, 41-50. https://doi.org/10.1016/j.ijfoodmicro.2019.05.002

Frauendorfer, F., & Schieberle, P. (2006). Identification of the key aroma compounds in cocoa powder based on molecular sensory correlations. Journal of Agricultural and Food Chemistry, 54(15), 5521-5529. https://doi.org/10.1021/jf060728k

Gosalia, D. N., Salisbury, C. M., Ellman, J. A., & Diamond, S. L. (2005). High throughput substrate specificity profiling of serine and cysteine proteases using solution-phase fluorogenic peptide microarrays. Molecular and Cellular Proteomics, 4(5), 626-636. https://doi.org/10.1074/mcp.M500004-MCP200

Harris, J. L., Backes, B. J., Leonetti, F., Mahrus, S., Ellman, J. A., & Craik, C. S. (2000). Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proceedings of the National Academy of Sciences of the United States of America, 97(14), 7754-7759. https://doi.org/10.1073/pnas.140132697

Hinneh, M., Semanhyia, E., Van de Walle, D., De Winne, A., Tzompa-Sosa, D. A., Scalone, G. L. L., De Meulenaer, B., Messens, K., Van Durme, J., Afoakwa, E. O., De Cooman, L., & Dewettinck, K. (2018). Assessing the influence of pod storage on sugar and free amino acid profiles and the implications on some Maillard reaction related flavor volatiles in Forastero cocoa beans. Food Research International, 111, 607-620. https://doi.org/10.1016/j.foodres.2018.05.064

International Cocoa Organization (ICCO) (2022). Quarterly Bulletin of Cocoa Statistics. ICCO. Retrieved from https://www.icco.org/statistics/#data

Kadow, D., Niemenak, N., Rohn, S., & Lieberei, R. (2015). Fermentation-like incubation of cocoa seeds (Theobroma cacao L.) - Reconstruction and guidance of the fermentation process. LWT – Food Science and Technology, 62(1), 357–361. https://doi.org/10.1016/j.lwt.2015.01.015

Marseglia, A., Musci, M., Rinaldi, M., Palla, G., & Caligiani, A. (2020). Volatile fingerprint of unroasted and roasted cocoa beans (Theobroma cacao L.) from different geographical origins. Food Research International, 132, 109101. https://doi.org/10.1016/j.foodres.2020.109101

Ministry of Agriculture (2023). Statistical of National Leading Estate Crops Commodity 2021-2023. Ministry of Agriculture.

Misnawi, Jinap, S., Jamilah, B., & Nazamid, S. (2003). Effects of incubation and polyphenol oxidase enrichment on colour, fermentation index, procyanidins and astringency of unfermented and partly fermented cocoa beans. International Journal of Food Science and Technology, 38(3), 285-295. https://doi.org/10.1046/j.1365-2621.2003.00674.x

Misnawi, Jinap, S., Nazamid, S., & Jamilah, B. (2002). Activation of remaining key enzymes in dried under-fermented cocoa beans and its effect on aroma precursor formation. Food Chemistry, 78(4), 407-417. https://doi.org/10.1016/S0308-8146(02)00120-6

Nelson, N. (1944). A photometric adaptation of the somogyi method for the determination of glucose. Journal of Biological Chemistry, 153(2), 375-380. https://doi.org/10.1016/s0021-9258(18)71980-7

Noman, A., Xu, Y., AL-Bukhaiti, W. Q., Abed, S. M., Ali, A. H., Ramadhan, A. H., & Xia, W. (2018). Influence of enzymatic hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate obtained from Chinese sturgeon (Acipenser sinensis) by using papain enzyme. Process Biochemistry, 67, 19–28. https://doi.org/10.1016/j.procbio.2018.01.009

Purbaningrum, K., Hidayat, C., Witasari, L. D., & Utami, T. (2023). Flavor Precursors and Volatile Compounds Improvement of Unfermented Cocoa Beans by Hydrolysis Using Bromelain. Foods, 12(4), 820. https://doi.org/10.3390/foods12040820

Putra, S. N. K. M., Ishak, N. H., & Sarbon, N. M. (2018). Preparation and characterization of physicochemical properties of golden apple snail (Pomacea canaliculata) protein hydrolysate as affected by different proteases. Biocatalysis and Agricultural Biotechnology, 13, 123-128. https://doi.org/10.1016/j.bcab.2017.12.002

Reza, M., Ardekani, S., Khanavi, M., Hajimahmoodi, M., Jahangiri, M., & Hadjiakhoondi, A. (2010). Comparison of Antioxidant Activity and Total Phenol Contents of some Date Seed Varieties from Iran. Iranian Journal of Pharmaceutical Research, 9(2), 141-6.

Rodriguez-Campos, J., Escalona-Buendía, H. B., Contreras-Ramos, S. M., Orozco-Avila, I., Jaramillo-Flores, E., & Lugo-Cervantes, E. (2012). Effect of fermentation time and drying temperature on volatile compounds in cocoa. Food Chemistry, 132(1), 277-288. https://doi.org/10.1016/j.foodchem.2011.10.078

Rojas, M., Hommes, A., Heeres, H. J., & Chejne, F. (2022). Physicochemical Phenomena in the Roasting of Cocoa (Theobroma cacao L.). Food Engineering Reviews, 14(3), 509-533. https://doi.org/10.1007/s12393-021-09301-z

Rottiers, H., Tzompa Sosa, D. A., De Winne, A., Ruales, J., De Clippeleer, J., De Leersnyder, I., De Wever, J., Everaert, H., Messens, K., & Dewettinck, K. (2019). Dynamics of volatile compounds and flavor precursors during spontaneous fermentation of fine flavor Trinitario cocoa beans. European Food Research and Technology, 245(9), 1917-1937. https://doi.org/10.1007/s00217-019-03307-y

Selamassakul, O., Laohakunjit, N., Kerdchoechuen, O., Yang, L., & Maier, C. S. (2020). Bioactive peptides from brown rice protein hydrolyzed by bromelain: Relationship between biofunctional activities and flavor characteristics. Journal of Food Science, 85(3), 707-717. https://doi.org/10.1111/1750-3841.15052

Singh, T. P., Siddiqi, R. A., & Sogi, D. S. (2019). Statistical optimization of enzymatic hydrolysis of rice bran protein concentrate for enhanced hydrolysate production by papain. LWT, 99, 77-83. https://doi.org/10.1016/j.lwt.2018.09.014

Tamimi, K. A., Hidayat, C., Utami, T., & Witasari, L. D. (2023). Flavor precursor formation of non-fermented forastero cocoa beans after flavourzyme® and glucose treatment. LWT, 184, 114910. https://doi.org/10.1016/j.lwt.2023.114910

Tarigan, E. B., & Iflah, T. (2017). Some physicochemical cocoa fermentation and non fermentation. Jurnal Agroindustri Halal, 3(1), 48-62. https://doi.org/10.30997/jah.v3i1.687

Tuenter, E., Delbaere, C., De Winne, A., Bijttebier, S., Custers, D., Foubert, K., Van Durme, J., Messens, K., Dewettinck, K., & Pieters, L. (2020). Non-volatile and volatile composition of West African bulk and Ecuadorian fine-flavor cocoa liquor and chocolate. Food Research International, 130, 108943. https://doi.org/10.1016/j.foodres.2019.108943

Utrilla-Vázquez, M., Rodríguez-Campos, J., Avendaño-Arazate, C. H., Gschaedler, A., & Lugo-Cervantes, E. (2020). Analysis of volatile compounds of five varieties of Maya cocoa during fermentation and drying processes by Venn diagram and PCA. Food Research International, 129, 108834. https://doi.org/10.1016/j.foodres.2019.108834

Viesser, J. A., de Melo Pereira, G. V., de Carvalho Neto, D. P., Rogez, H., Góes-Neto, A., Azevedo, V., Brenig, B., Aburjaile, F., & Soccol, C. R. (2021). Co-culturing fructophilic lactic acid bacteria and yeast enhanced sugar metabolism and aroma formation during cocoa beans fermentation. International Journal of Food Microbiology, 339, 109015. https://doi.org/10.1016/j.ijfoodmicro.2020.109015

Ziegler, G. (2017). Flavor development in cocoa and chocolate. In S. T. Beckett, M. S. Fowler, & G. R. Ziegler (eds.). Beckett’s Industrial Chocolate Manufacture and Use (5th ed., pp. 185-215. https://doi.org/10.1002/9781118923597.ch8

Downloads

Publicado

2024-05-03

Como Citar

IBRAHIM, N. S., HIDAYAT, C., UTAMI, T., YANTI, R., & WITASARI, L. (2024). Flavor Precursor and Volatile Compounds Formation of Unfermented Cocoa Beans Hydrolyzed by Papain. Food Science and Technology, 44. https://doi.org/10.5327/fst.00224

Edição

Seção

Artigos Originais