Nanoencapsulation of natural products and their role in the preservation and control of contaminations in the food industry




antimicrobial resistance, natural products, nanoemulsions, essential oils, food industry


Microbial resistance is a problem of high notoriety and importance, being investigated in several scientific areas. Directly correlated to the abuse of macrolides in the pandemic context, the difficulty in eliminating resistant microorganisms and the control of bacterial contamination in an industrial food environment have been increasingly worrying nowadays. The present study demonstrates hypotheses of microbial control using the encapsulation of essential oils and products of natural origin through the technology used in nanocomposites. The aid in the prevention and control of microorganisms with high antimicrobial resistance factors in food industry environments can be seen. Furthermore, new approaches and themes applied in the denaturation of pathogenic biofilms and nanoencapsulation and the use of common metals and transition metals are highlighted.


Não há dados estatísticos.


Abrantes, J. A., & Nogueira, J. M. R. (2021). Resistência bacteriana aos antimicrobianos: uma revisão das principais espécies envolvidas em processos infecciosos. Revista Brasileira de Análises Clínicas, 219-223.

Alfadul, S. M., & Elneshwy, E. A. (2010). Use of nanotechnology in food processing, packaging, and safety–review. American Journal of Food, Agriculture, Nutrition and Development, 10(6).

Ali, S. G., Ansari, M. A., Khan, H. M., Jalal, M., Mahdi, A. A., & Cameotra, S. S. (2017). Crataeva Nurvala Nanoparticles Inhibit Virulence Factors and Biofilm Formation in Clinical Isolates of Pseudomonas Aeruginosa. Journal of Basic Microbiology, 57(3), 193–203.

Al-Shabib, N. A., Husain, F. M., Ahmed, F., Khan, R. A., Ahmad, I., Alsharaeh, E., Khan, M. S., Hussain, A., Rehman, M. T., & Yusuf, M. (2016). Biogenic Synthesis of Zinc Oxide Nanostructures from Nigella Sativa Seed: Prospective Role as Food Packaging Material Inhibiting Broad-Spectrum Quorum Sensing and Biofilm. Science Reports, 6, 36761.

Anvar, A. A., Ahari, H., & Ataee, M. (2021). Antimicrobial Properties of Food Nanopackaging: A New Focus on Foodborne Pathogens. Frontiers in Microbiology, 12, 690706.

Asfour, H. Z. (2018). Ultrastructure Anti-Quorum Sensing Natural Compounds. Journal of Microscopy, 6(1), 1-10.

Attaran, S. A., Hassan, A., & Wahit, M. U. (2017). Materials for Food Packaging Applications Based on Bio-Based Polymer Nanocomposites: A Review. Journal of Thermoplastic Composite Materials, 30, 143-173.

Bai, C., Ke, Y., Hu, X., Xing, L., Zhao, Y., Lu, S., & Lin, Y. (2020). Preparation and Properties of Amphiphilic Hydrophobically Associative Polymer/Montmorillonite Nanocomposites. The Royal Society Open Science, 7(5), 200199.

Balaban, N. Q., Gerdes, K., Lewis, K., & McKinney, J. D. (2013). A Problem of Persistence: Still More Questions than Answers? Nature Reviews Microbiology, 11(8), 587-591.

Banwo, K., Alao, M. B., & Sanni, A. I. (2020). Antioxidant and Antidiarrhoeal Activities of Methanolic Extracts of Stem Bark of Parkia Biglobosa and Leaves of Parquetina Nigrescens. Journal of Herbs, Spices & Medicinal Plants, 26(1), 14-29.

Banwo, K., Oduola, S., Alao, M., & Sanni, A. (2022). Hepatoprotective Potentials of Methanolic Extracts of Roselle and Beetroots against Carbon Tetrachloride and Escherichia Coli Induced Stress in Wistar Rats. Egyptian Journal of Basic and Applied Sciences, 9(1), 423-440.

Banwo, K., Olojede, A. O., Adesulu-Dahunsi, A. T., Verma, D. K., Thakur, M., Tripathy, S., Singh, S., Patel, A. R., Gupta, A. K., & Aguilar, C. N. (2021). Functional Importance of Bioactive Compounds of Foods with Potential Health Benefits: A Review on Recent Trends. Food Bioscience, 43, 101320.

Basavegowda, N., Patra, J. K., Baek, K.-H. (2020). Essential Oils and Mono/Bi/Tri-Metallic Nanocomposites as Alternative Sources of Antimicrobial Agents to Combat Multidrug-Resistant Pathogenic Microorganisms: An Overview. Molecules, 25(5), 1058.

Bigger, J. (1944). Treatment of Staphyloeoeeal Infections with Penicillin by Intermittent Sterilisation. Lancet, 244(6320), 497-500.

Birla, S. S., Tiwari, V. V., Gade, A. K., Ingle, A. P., Yadav, A. P., & Rai, M. K. (2009). Fabrication of Silver Nanoparticles by Phoma Glomerata and Its Combined Effect against Escherichia Coli, Pseudomonas Aeruginosa and Staphylococcus Aureus. Letters in Applied Microbiology, 48(2), 173-179.

Bland, R., Brown, S. R. B., Waite‐Cusic, J., Kovacevic, J. (2022). Probing Antimicrobial Resistance and Sanitizer Tolerance Themes and Their Implications for the Food Industry through the Listeria Monocytogenes Lens. Comprehensive Reviews in Food Science and Food Safety, 21(2), 1777-1802.

Blassel, L., Zhukova, A., Villabona-Arenas, C. J., Atkins, K. E., Hué, S., & Gascuel, O. (2021). Drug Resistance Mutations in HIV: New Bioinformatics Approaches and Challenges. Current Opinion Virology, 51, 56-64.

Brauner, A., Fridman, O., Gefen, O., & Balaban, N. Q. (2016). Distinguishing between Resistance, Tolerance and Persistence to Antibiotic Treatment. Nature Reviews in Microbiology, 14, 320-330.

Brooks, J. D., & Flint, S. H. (2008). Biofilms in the Food Industry: Problems and Potential Solutions. Journal of Food Science Technology, 43(12), 2163-2176.

Bumbudsanpharoke, N., Choi, J., & Ko, S. (2015). Applications of Nanomaterials in Food Packaging. Journal of Nanoscience and Nanotechnology, 15(9), 6357-6372.

Campista-León, S., Rivera-Serrano, B. V., Garcia-Guerrero, J. T., Peinado-Guevara, L. I. (2021). Phylogenetic Characterization and Multidrug Resistance of Bacteria Isolated from Seafood Cocktails. Archives in Microbiology, 203(6), 3317-3330.

Casey, P. (2006). Nanoparticle Technologies and Applications. In R. H. J. Hannink & A. J. Hill (Eds.), Nanostructure control of materials (pp. 1-31). Elsevier.

Cejudo-Bastante, M. J., Cejudo-Bastante, C., Cran, M. J., Heredia, F. J., & Bigger, S.W. (2020). Optical, Structural, Mechanical and Thermal Characterization of Antioxidant Ethylene Vinyl Alcohol Copolymer Films Containing Betalain-Rich Beetroot. Food Packaging and Shelf Life, 24, 100502.

Centers for Disease Control and Prevention (2019). Prevention Antibiotic Resistance Threats in the United States. US Department of Health and Human Services.

Cerrada, M. L., Serrano, C., Sánchez‐Chaves, M., Fernández‐García, M., Fernández‐Martín, F., de Andres, A., Rioboo, R. J. J., Kubacka, A., Ferrer, M., & Fernández‐García, M. (2008). Self‐sterilized EVOH‐TiO2 Nanocomposites: Interface Effects on Biocidal Properties. Advanced Functional Materials, 18(13), 1949-1960.

Chang, Z., Yadav, V., Lee, S. C., & Heitman, J. (2019). Epigenetic Mechanisms of Drug Resistance in Fungi. Fungal Genetics and Biology, 132, 103253.

Chaudhari, A. A., Jasper, S. L., Dosunmu, E., Miller, M. E., Arnold, R. D., Singh, S. R., & Pillai, S. (2015). Novel Pegylated Silver Coated Carbon Nanotubes Kill Salmonella but They Are Non-Toxic to Eukaryotic Cells. Journal of Nanobiotechnology, 13, 23.

Chiang, I.-T., Chen, W.-T., Tseng, C.-W., Chen, Y.-C., Kuo, Y.-C., Chen, B.-J., Weng, M.-C., Lin, H.-J., & Wang, W.-S. (2017). Hyperforin Inhibits Cell Growth by Inducing Intrinsic and Extrinsic Apoptotic Pathways in Hepatocellular Carcinoma Cells. Anticancer Research, 37(1), 161-167.

Christaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. Journal of Molecular Evolution, 88(1), 26-40.

Colombo, A. L., Almeida Júnior, J. N., & Guinea, J. (2017). Emerging Multidrug-Resistant Candida Species. Current Opinion in Infectious Diseases, 30(6), 528-538.

Conte, A., Longano, D., Costa, C., Ditaranto, N., Ancona, A., Cioffi, N., Scrocco, C., Sabbatini, L., Contò, F., Del Nobile, M. A. (2013). A Novel Preservation Technique Applied to Fiordilatte Cheese. Innovative Food Science & Emerging Technologies, 19, 158-165.

Cowen, L. E., Sanglard, D., Howard, S. J., Rogers, P. D., & Perlin, D. S. (2015). Mechanisms of Antifungal Drug Resistance. Cold Spring Harbor Perspectives in Medicine, 5(7), a019752.

Cox, G., & Wright, G. D. (2013). Intrinsic Antibiotic Resistance: Mechanisms, Origins, Challenges and Solutions. International Journal of Medical Microbiology, 303(6-7), 287-292.

D’Costa, V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W. L., Schwarz, C., Froese, D., Zazula, G., Calmels, F., & Debruyne, R. (2011). Antibiotic Resistance Is Ancient. Nature, 477(7365), 457-461.

Dancer, S. J., Shears, P., & Platt, D. (1997). Isolation and Characterization of Coliforms from Glacial Ice and Water in Canada’s High Arctic. Journal of Applied Microbiology, 82(5), 597-609.

de Abreu, D. A. P., Cruz, J. M., Angulo, I., Losada, P. P. (2010). Mass Transport Studies of Different Additives in Polyamide and Exfoliated Nanocomposite Polyamide Films for Food Industry. Packaging Technology and Science, 23(2), 59-68.

de la Fuente-Núñez, C., Reffuveille, F., Fernández, L., & Hancock, R. E. W. (2013). Bacterial Biofilm Development as a Multicellular Adaptation: Antibiotic Resistance and New Therapeutic Strategies. Current Opinion in Microbiology, 16(5), 580-589.

Deshmukh, R. K., & Gaikwad, K. K. (2022). Natural Antimicrobial and Antioxidant Compounds for Active Food Packaging Applications. Biomass Conversion and Biorefinery, 1-22.

Díaz‐Visurraga, J., Meléndrez, M. F., Garcia, A., Paulraj, M., & Cárdenas, G. (2010). Semitransparent Chitosan‐TiO2 Nanotubes Composite Film for Food Package Applications. Journal of Applied Polymer Science, 116(6), 3503-3515.

Duncan, T. V. (2011). Applications of Nanotechnology in Food Packaging and Food Safety: Barrier Materials, Antimicrobials and Sensors. Journal of Colloid and Interface Science, 363, 1-24.

Emamhadi, M. A., Sarafraz, M., Akbari, M., Fakhri, Y., Linh, N. T. T., & Khaneghah, A. M. (2020). Nanomaterials for Food Packaging Applications: A Systematic Review. Food and Chemical Toxicology, 146, 111825.

Emamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2010). Evaluation of Nanocomposite Packaging Containing Ag and ZnO on Shelf Life of Fresh Orange Juice. Innovative Food Science & Emerging Technologies, 11(4), 742-748.

Espitia, P. J. P., Soares, N. de F. F., Coimbra, J. S. dos R., de Andrade, N. J., Cruz, R. S., & Medeiros, E. A. (2012). Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food and Bioprocess Technology, 5, 1447-1464.

Faille, C., Tauveron, G., Le Gentil-Lelièvre, C., & Slomianny, C. (2007). Occurrence of Bacillus Cereus Spores with a Damaged Exosporium: Consequences on the Spore Adhesion on Surfaces of Food Processing Lines. Journal of Food Protection, 70(10), 2346-2353.

Frost, I., Van Boeckel, T. P., Pires, J., Craig, J., & Laxminarayan, R. (2019). Global Geographic Trends in Antimicrobial Resistance: The Role of International Travel. Journal of Travel Medicine, 26(8), taz036.

Fujita, A., Sarkar, D., Genovese, M. I., & Shetty, K. (2017). Improving Anti-Hyperglycemic and Anti-Hypertensive Properties of Camu-Camu (Myriciaria Dubia Mc. Vaugh) Using Lactic Acid Bacterial Fermentation. Process Biochemistry, 59(Part B), 133-140.

Galie, S., García-Gutiérrez, C., Miguélez, E. M., Villar, C. J. & Lombó, F. (2018). Biofilms in the Food Industry: Health Aspects and Control Methods. Frontiers in Microbiology, 9, 898.

Girdthep, S., Worajittiphon, P., Molloy, R., Lumyong, S., Leejarkpai, T., & Punyodom, W. (2014). Biodegradable Nanocomposite Blown Films Based on Poly (Lactic Acid) Containing Silver-Loaded Kaolinite: A Route to Controlling Moisture Barrier Property and Silver Ion Release with a Prediction of Extended Shelf Life of Dried Longan. Polymer, 55(26), 6776-6788.

Handwerger, S., & Tomasz, A. (1985). Antibiotic Tolerance among Clinical Isolates of Bacteria. Reviews of Infectious Diseases, 7(3), 368-386.

Hay, A. J., Wolstenholme, A. J., Skehel, J. J., & Smith, M. H. (1985). The molecular basis of the specific anti‐influenza action of amantadine. EMBO Journal, 4, 3021-3024.

Hemeg, H. A. (2017). Nanomaterials for Alternative Antibacterial Therapy. International Journal of Nanomedicine, 12, 8211-8225.

Herman, A., & Herman, A. P. (2014). Nanoparticles as Antimicrobial Agents: Their Toxicity and Mechanisms of Action. Journal of Nanoscience and Nanotechnology, 14(1), 946-957.

Horne, D., & Tomasz, A. (1977). Tolerant Response of Streptococcus Sanguis to Beta-Lactams and Other Cell Wall Inhibitors. Antimicrobial Agents Chemotherapy, 11(5), 888-896.

Horue, M., Cacicedo, M. L., Fernandez, M. A., Rodenak-Kladniew, B., Sánchez, R. M. T., & Castro, G. R. (2020). Antimicrobial Activities of Bacterial Cellulose–Silver Montmorillonite Nanocomposites for Wound Healing. Materials Science and Engineering: C, 116, 111152.

Hossain, F., Follett, P., Salmieri, S., Vu, K. D., Fraschini, C., & Lacroix, M. (2019). Antifungal Activities of Combined Treatments of Irradiation and Essential Oils (EOs) Encapsulated Chitosan Nanocomposite Films in in Vitro and in Situ Conditions. International Journal of Food Microbiology, 295, 33-40.

Hu, C., Wang, L., Lin, Y., Liang, H., Zhou, S., Zheng, F., Feng, X., Rui, Y., & Shao, L. (2019). Nanoparticles for the Treatment of Oral Biofilms: Current State, Mechanisms, Influencing Factors, and Prospects. Advanced Healthcare Materials, 8(24), e1901301.

Huang, J.-Y., Li, X., & Zhou, W. (2015). Safety Assessment of Nanocomposite for Food Packaging Application. Trends in Food Science & Technology, 45(2), 187-199.

Hussain, M., Galvin, H. D., Haw, T. Y., Nutsford, A. N., Husain, M. (2017). Drug Resistance in Influenza A Virus: The Epidemiology and Management. Infectious and Drug Resistance, 10, 121-134.

Jin, T., Liu, L., Zhang, H., & Hicks, K. (2009). Antimicrobial Activity of Nisin Incorporated in Pectin and Polylactic Acid Composite Films against Listeria Monocytogenes. International Journal of Food Science and Technology, 44(2), 322-329.

Ju, A., & Song, K. B. (2019). Development of Teff Starch Films Containing Camu-Camu (Myrciaria Dubia Mc. Vaugh) Extract as an Antioxidant Packaging Material. Industrial Crops and Products, 141, 111737.

Jubeh, B., Breijyeh, Z., & Karaman, R. (2020). Resistance of Gram-Positive Bacteria to Current Antibacterial Agents and Overcoming Approaches. Molecules, 25(12), 2888.

Kang, S., Pinault, M., Pfefferle, L. D., Elimelech, M. (2007). Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity. Langmuir, 23(17), 8670-8673.

Kariyawasam, R. M., Julien, D. A., Jelinski, D. C., Larose, S. L., Rennert-May, E., Conly, J. M., Dingle, T. C., Chen, J. Z., Tyrrell, G. J., Ronksley, P. E., & Barkema, H. W. (2022). Antimicrobial Resistance (AMR) in COVID-19 Patients: A Systematic Review and Meta-Analysis (November 2019–June 2021). Antimicrobial Resistance and Infection Control, 11(1), 45.

Karygianni, L., Ren, Z., Koo, H., & Thurnheer, T. (2020). Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends in Microbiology, 28(8), 668-681.

Kausar, S., Said Khan, F., Ishaq Mujeeb Ur Rehman, M., Akram, M., Riaz, M., Rasool, G., Hamid Khan, A., Saleem, I., Shamim, S., & Malik, A. (2021). A Review: Mechanism of Action of Antiviral Drugs. International Journal of Immunopathology and Pharmacology, 35, 20587384211002620.

Kester, J. C., & Fortune, S. M. (2014). Persisters and beyond: Mechanisms of Phenotypic Drug Resistance and Drug Tolerance in Bacteria. Critical Reviews in Biochemistry and Molecular Biology, 49(2), 91-101.

Khan, A., Miller, W. R., & Arias, C. A. (2018). Mechanisms of Antimicrobial Resistance among Hospital-Associated Pathogens. Experts Review of Anti-Infective Therapy, 16(4), 269-287.

Khatibi, S. A., Hamidi, S., & Siahi-Shadbad, M. R. (2022). Application of Liquid-Liquid Extraction for the Determination of Antibiotics in the Foodstuff: Recent Trends and Developments. Critical Reviews in Analytical Chemistry, 52(2), 327-342.

Kotelnikova, N., Vainio, U., Pirkkalainen, K., & Serimaa, R. (2007). Novel Approaches to Metallization of Cellulose by Reduction of Cellulose‐incorporated Copper and Nickel Ions. Macromolecular Symposia, 254(1), 74-79.

Kumar, P., Tanwar, R., Gupta, V., Upadhyay, A., Kumar, A., & Gaikwad, K. K. (2021). Pineapple Peel Extract Incorporated Poly (Vinyl Alcohol)-Corn Starch Film for Active Food Packaging: Preparation, Characterisation and Antioxidant Activity. International Journal of Biological Macromolecules, 187, 223-231.

Lampejo, T. (2020). Influenza and Antiviral Resistance: An Overview. European Journal of Clinical Microbiology & Infectious Diseases, 39(7), 1201-1208.

Lau, A. K.-T., & Hui, D. (2002). The Revolutionary Creation of New Advanced Materials—Carbon Nanotube Composites. Composites Part B: Engineering, 33(4), 263-277.

Lehtinen, S., Blanquart, F., Lipsitch, M., Fraser, C., & Maela Pneumococcal Collaboration (2019). On the Evolutionary Ecology of Multidrug Resistance in Bacteria. PLoS Pathogens, 15(5), e1007763.

Li, J.-H., Miao, J., Wu, J.-L., Chen, S.-F., & Zhang, Q.-Q. (2014). Preparation and Characterization of Active Gelatin-Based Films Incorporated with Natural Antioxidants. Food Hydrocolloids, 37, 166-173.

Li, W.-R., Xie, X.-B., Shi, Q.-S., Duan, S.-S., Ouyang, Y.-S., & Chen, Y.-B. (2011). Antibacterial Effect of Silver Nanoparticles on Staphylococcus Aureus. Biometals, 24(1), 135-141.

Liao, Y., Zhang, R., & Qian, J. (2019). Printed Electronics Based on Inorganic Conductive Nanomaterials and Their Applications in Intelligent Food Packaging. RSC Advances, 9(50), 29154-29172.

Lipsitch, M., & Samore, M. H. (2002). Antimicrobial Use and Antimicrobial Resistance: A Population Perspective. Emerging Infectious Diseases, 8(4), 347-354.

Llorens, A., Lloret, E., Picouet, P., & Fernandez, A. (2012). Study of the Antifungal Potential of Novel Cellulose/Copper Composites as Absorbent Materials for Fruit Juices. International Journal of Food Microbiology, 158(2), 113-119.

Lok, C.-N., Ho, C.-M., Chen, R., He, Q.-Y., Yu, W.-Y., Sun, H., Tam, P. K.-H., Chiu, J.-F., Che, C.-M. (2007). Silver Nanoparticles: Partial Oxidation and Antibacterial Activities. Journal of Biological Inorganic Chemistry, 12, 527-534.

Luz, C. F., van Niekerk, J. M., Keizer, J., Beerlage-de Jong, N., Braakman-Jansen, L. M. A., Stein, A., Sinha, B., van Gemert-Pijnen, J., & Glasner, C. (2022). Mapping Twenty Years of Antimicrobial Resistance Research Trends. Artificial Intelligence in Medicine, 123, 102216.

Masurkar, S. A., Chaudhari, P. R., Shidore, V. B., & Kamble, S. P. (2012). Effect of Biologically Synthesised Silver Nanoparticles on Staphylococcus Aureus Biofilm Quenching and Prevention of Biofilm Formation. IET Nanobiotechnology, 6(3), 110-114.

McCarlie, S., Boucher, C. E., & Bragg, R. R. (2020). Molecular Basis of Bacterial Disinfectant Resistance. Drug Resistance Updates, 48, 100672.

McEwen, S. A., & Collignon, P. (2018). Antimicrobial Resistance: A One Health Perspective. Microbiology Spectrum, 6(2).

Mihindukulasuriya, S. D. F., & Lim, L.-T. (2014). Nanotechnology Development in Food Packaging: A Review. Trends in Food Science & Technology, 40(2), 149-167.

Miller, K. P., Wang, L., Chen, Y.-P., Pellechia, P. J., Benicewicz, B. C., & Decho, A. W. (2015). Engineering Nanoparticles to Silence Bacterial Communication. Frontiers in Microbiology, 6, 189.

Mir, S. A., Dar, B. N., Wani, A. A., Shah, M. A. (2018). Effect of Plant Extracts on the Techno-Functional Properties of Biodegradable Packaging Films. Trends in Food Science & Technology, 80, 141-154.

Morrison, L., & Zembower, T. R. (2020). Antimicrobial Resistance. Gastrointestinal Endoscopy Clinics of North America, 30(4), 619-635.

Mühlberg, E., Umstätter, F., Kleist, C., Domhan, C., Mier, W., & Uhl, P. (2020). Renaissance of Vancomycin: Approaches for Breaking Antibiotic Resistance in Multidrug-Resistant Bacteria. Canadian Journal of Microbiology, 66(1), 11-16.

Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., Han, C., Bisignano, C., Rao, P., & Wool, E. (2022). Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet, 399(10325), 629-655.

Mwangi, J., Hao, X., Lai, R., & Zhang, Z.-Y. (2019). Antimicrobial Peptides: New Hope in the War against Multidrug Resistance. Zoology Research, 40(6), 488-505.

Naik, K., & Kowshik, M. (2014). Anti‐quorum Sensing Activity of AgCl‐TiO2 Nanoparticles with Potential Use as Active Food Packaging Material. Journal of Applied Microbiology, 117(4), 972-983.

Nisa, I., Haroon, M., Driessen, A., Nijland, J., Rahman, H., Yasin, N., Hussain, M., Khan, T. A., Ali, A., Khan, S. A., & Qasim, M. (2022). Antimicrobial Resistance of Shigella Flexneri in Pakistani Pediatric Population Reveals an Increased Trend of Third-Generation Cephalosporin Resistance. Currents Microbiology, 79(4), 118.

Oroian, M., & Escriche, I. (2015). Antioxidants: Characterisation, Natural Sources, Extraction and Analysis. Food Research International, 74, 10-36.

Otsuka, Y. (2020). Potent Antibiotics Active against Multidrug-Resistant Gram-Negative Bacteria. Chemical and Pharmaceutical Bulletin, 68(3), 182-190.

Pagnossa, J. P., Rocchetti, G., Abreu Martins, H. H., Bezerra, J. D. P., Batiha, G. E. S., El-Masry, E. A., Cocconcelli, P. S., Santos, C., Lucini, L., & Piccoli, R. H. (2021). Morphological and metabolomics impact of sublethal doses of natural compounds and its nanoemulsions in Bacillus cereus. Food Research International, 149, 110658.

Pagnossa, J. P., Rocchetti, G., Bezerra, J. D. P., Batiha, G. E. S., El-Masry, E. A., Mahmoud, M. H., Alsayegh, A. A., Mashraqi, A., Cocconcelli, P. S., Santos, C., Lucini, L., & Hilsdorf Piccoli, R. (2022). Untargeted metabolomics approach of cross-adaptation in Salmonella enterica induced by major compounds of essential oils. Frontiers in Microbiology, 13, 769110.

Pereira, R., dos Santos Fontenelle, R. O., de Brito, E.H.S., de Morais, S. M. (2021). Biofilm of Candida Albicans: Formation, Regulation and Resistance. Journal of Applied Microbiology, 131(1), 11-22.

Pradeep, H., Bindu, M., Suresh, S., Thadathil, A., & Periyat, P. (2022). Recent Trends and Advances in Polyindole-Based Nanocomposites as Potential Antimicrobial Agents: A Mini Review. RSC Advances, 12(13), 8211-8227.

Prateeksha, Singh, B. R., Shoeb, M., Sharma, S., Naqvi, A. H., Gupta, V. K., & Singh, B. N. (2017). Scaffold of Selenium Nanovectors and Honey Phytochemicals for Inhibition of Pseudomonas Aeruginosa Quorum Sensing and Biofilm Formation. Frontiers in Cellular and Infection Microbiology, 7, 93.

Prestinaci, F., Pezzotti, P., & Pantosti, A. (2015). Antimicrobial Resistance: A Global Multifaceted Phenomenon. Pathogens and Global Health, 109(7), 309-318.

Priyamvada, P., Debroy, R., Anbarasu, A., & Ramaiah, S. (2022). A Comprehensive Review on Genomics, Systems Biology and Structural Biology Approaches for Combating Antimicrobial Resistance in ESKAPE Pathogens: Computational Tools and Recent Advancements. World Journal of Microbiology and Biotechnology, 38(9), 153.

Qais, F. A., Khan, M. S., & Ahmad, I. (2018). Nanoparticles as Quorum Sensing Inhibitor: Prospects and Limitations. In V. C. Kalia (ed.), Biotechnological applications of quorum sensing inhibitors (pp. 227-244). Springer.

Radfar, R., Hosseini, H., Farhoodi, M., Ghasemi, I., Średnicka-Tober, D., Shamloo, E., & Khaneghah, A. M. (2020). Optimization of Antibacterial and Mechanical Properties of an Active LDPE/Starch/Nanoclay Nanocomposite Film Incorporated with Date Palm Seed Extract Using D-Optimal Mixture Design Approach. International Journal of Biological Macromolecules, 158, 790-799.

Rather, M. A., Neog, P. R., Gupta, K., & Mandal, M. (2022). Microbial Biofilm-Mediated Bioremediation of Heavy Metals: A Sustainable Approach. In J. A. Malik (ed.), Microbes and Microbial Biotechnology for Green Remediation (pp. 485-502). Elsevier.

Rawson, T. M., Wilson, R. C., & Holmes, A. (2021). Understanding the Role of Bacterial and Fungal Infection in COVID-19. Clinical Microbiology and Infection, 27(1), 9-11.

Resch, A., Fehrenbacher, B., Eisele, K., Schaller, M., & Götz, F. (2005). Phage Release from Biofilm and Planktonic Staphylococcus aureus Cells. FEMS Microbiology Letters, 252(1), 89-96.

Revie, N. M., Iyer, K. R., Robbins, N., & Cowen, L. E. (2018). Antifungal Drug Resistance: Evolution, Mechanisms and Impact. Current Opinion in Microbiology, 45, 70-76.

Said, K. B., Alsolami, A., Khalifa, A. M., Khalil, N. A., Moursi, S., Rakha, E., Osman, A., Rashidi, M., Taha, T. E., & Bashir, A. (2022). Molecular Diagnosis, Antimicrobial Resistance Profiles and Disease Patterns of Gram-Positive Pathogens Recovered from Clinical Infections in Major Ha’il Hospitals. Microbiology Research, 13(1), 49-63.

Saleh, M. M., Sadeq, R. A., Latif, H. K. A., Abbas, H. A., & Askoura, M. (2019). Zinc Oxide Nanoparticles Inhibits Quorum Sensing and Virulence in Pseudomonas Aeruginosa. African Health Sciences, 19(2), 2043-2055.

Sekyere, J. O., & Asante, J. (2018). Emerging Mechanisms of Antimicrobial Resistance in Bacteria and Fungi: Advances in the Era of Genomics. Frontiers in Microbiology, 13, 241-262.

Sharma, D., Misba, L., & Khan, A. U. (2019). Antibiotics versus Biofilm: An Emerging Battleground in Microbial Communities. Antimicrobial Resistance & Infection Control, 8, 76.

Silvestre, C., Duraccio, D., & Cimmino, S. (2011). Food Packaging Based on Polymer Nanomaterials. Progress in Polymer Science, 36(12), 1766-1782.

Singh, B. R., Singh, B. N., Singh, A., Khan, W., Naqvi, A. H., Singh, H. B. (2015). Mycofabricated Biosilver Nanoparticles Interrupt Pseudomonas Aeruginosa Quorum Sensing Systems. Scientific Reports, 5, 13719.

Singh, R., Ray, P., Das, A., Sharma, M. (2010). Penetration of Antibiotics through Staphylococcus aureus and Staphylococcus epidermidis Biofilms. Journal of Antimicrobial Chemotherapy, 65(9), 1955-1958.

Siripatrawan, U., & Harte, B. R. (2010). Physical Properties and Antioxidant Activity of an Active Film from Chitosan Incorporated with Green Tea Extract. Food Hydrocolloids, 24(8), 770-775.

Sorrentino, A., Gorrasi, G., & Vittoria, V. (2007). Potential Perspectives of Bio-Nanocomposites for Food Packaging Applications. Trends in Food Science and Technology, 18(2), 84-95.

Suvarna, V., Nair, A., Mallya, R., Khan, T., & Omri, A. (2022). Antimicrobial Nanomaterials for Food Packaging. Antibiotics, 11(6), 729.

Tajeddin, B., Ramedani, N., & Mirzaei, H. (2019). Preparation and Characterization of a Bionanopolymer Film for Walnut Packaging. Polyolefins Journal, 6(2), 159-167.

Tajkarimi, M. M., Ibrahim, S. A., & Cliver, D. O. (2010). Antimicrobial Herb and Spice Compounds in Food. Food Control, 21(9), 1199-1218.

Tanwar, R., Gupta, V., Kumar, P., Kumar, A., Singh, S., & Gaikwad, K. K. (2021). Development and Characterization of PVA-Starch Incorporated with Coconut Shell Extract and Sepiolite Clay as an Antioxidant Film for Active Food Packaging Applications. International Journal of Biological Macromolecules, 185, 451-461.

Tiwari, B. K., Valdramidis, V. P., O’Donnell, C. P., Muthukumarappan, K., Bourke, P., & Cullen, P. (2009). Application of Natural Antimicrobials for Food Preservation. Journal of Agricultural and Food Chemistry, 57(14), 5987-6000.

Tuomanen, E., Cozens, R., Tosch, W., Zak, O., & Tomasz, A. (1986). The Rate of Killing of Escherichia Coli Byβ-Lactam Antibiotics Is Strictly Proportional to the Rate of Bacterial Growth. Journal of Microbiology and Genetics, 132(5), 1297-1304.

Van Vliet, A. H. M., Thakur, S., Prada, J. M., Mehat, J. W., La Ragione, R. M. (2022). Genomic Screening of Antimicrobial Resistance Markers in UK and US Campylobacter Isolates Highlights Stability of Resistance over an 18-Year Period. Antimicrobial Agents Chemotherapy, 66(5), e0168721.

Venter, H. (2019). Reversing Resistance to Counter Antimicrobial Resistance in the World Health Organisation’s Critical Priority of Most Dangerous Pathogens. Bioscience Reports, 39(4), bsr20180474.

Woraprayote, W., Kingcha, Y., Amonphanpokin, P., Kruenate, J., Zendo, T., Sonomoto, K., Benjakul, S., & Visessanguan, W. (2013). Anti-Listeria Activity of Poly (Lactic Acid)/Sawdust Particle Biocomposite Film Impregnated with Pediocin PA-1/AcH and Its Use in Raw Sliced Pork. International Journal of Food Microbiology, 167(2), 229-235.

Wu, H., Teng, C., Liu, B., Tian, H., & Wang, J. (2018). Characterisation and Long Term Antimicrobial Activity of the Nisin Anchored Cellulose Films. International Journal of Biological Macromolecules, 113, 487-493.

Xing, Y., Li, X., Zhang, L., Xu, Q., Che, Z., Li, W., Bai, Y., & Li, K. (2012). Effect of TiO2 Nanoparticles on the Antibacterial and Physical Properties of Polyethylene-Based Film. Progress in Organic Coatings, 73(2-3), 219-224.

Yan, M., Zheng, B., Li, Y., & Lv, Y. (2022). Antimicrobial Susceptibility Trends Among Gram-Negative Bacilli Causing Bloodstream Infections: Results from the China Antimicrobial Resistance Surveillance Trial (CARST) Program, 2011–2020. Infectious and Drug Resistance, 15, 2325-2337.

Yin, W., Wang, Y., Liu, L., & He, J. (2019). Biofilms: The Microbial “Protective Clothing” in Extreme Environments. International Journal of Molecular Sciences, 20(14), 3423.

Zaidi, S., Misba, L., & Khan, A. U. (2017). Nano-Therapeutics: A Revolution in Infection Control in Post Antibiotic Era. Nanomedicine, 13(7), 2281-2301.

Zimerman, R. A. (2010). Uso Indiscriminado de Antimicrobianos e Resistência Microbiana. Ministério da Saúde.




Como Citar

RODRIGUES, S. de O., SILVA, J. M. O. da, BANWO, K., LIMA, C. M. G., GUINÉ, R. P. F., VERRUCK, S., & PAGNOSSA, J. P. (2024). Nanoencapsulation of natural products and their role in the preservation and control of contaminations in the food industry. Food Science and Technology, 44.



Artigos de Revisão