Characterization of an eco-friendly active packaging film for food with ultraviolet light blocking ability
DOI:
https://doi.org/10.5327/fst.16723Palavras-chave:
eco-friendly, active packaging film for food, nano-powders, ultraviolet light blockingResumo
An eco-friendly active packaging film for food with ultraviolet (UV) light blocking ability was prepared using nano-magnesium oxide (MgO), nano-zinc oxide (ZnO), nano-cellulose (NCC), and poly(lactic acid) (PLA). The results revealed that the four nanomaterials were evenly dispersed in the PLA films, but no chemical bonds formed according to infrared spectroscopy and scanning electron microscopy. Compared with other PLA films, the PLA films with ZnO were endowed with excellent UV absorption and its surface hydrophilicity was decreased. On the contrary, the PLA films with MgO, ZnO, and NCC had improved mechanical strength, better antimicrobial activity, lower oxygen permeability (OP), and water vapor permeability (WVP). The PLA film with nanoparticles is an excellent active packaging material with improved physical, mechanical, and barrier properties, which can also avoid the damage of food or active ingredients in packaging from UV radiation, and has a broad application prospect for the preparation of multilayered composite active packaging materials for food.
Downloads
Referências
Altan, A., Aytac, Z., & Uyar, T. (2018). Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging. Food Hydrocolloids, 81, 48-59. https://doi.org/10.1016/j.foodhyd.2018.02.028
Arrieta, M. P., Fortunati, E., Dominici, F., Lopez, J., & Kenny, J. M. (2015). Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends. Carbohydrate Polymers, 121, 265-275. https://doi.org/10.1016/j.carbpol.2014.12.056
Aydogdu, A., Sumnu, G., & Sahin, S. (2018). A novel electrospun hydroxypropyl methylcellulose/polyethylene oxide blend nanofibers: Morphology and physicochemical properties. Carbohydrate Polymers, 181, 234-246. https://doi.org/10.1016/j.carbpol.2017.10.071
Baek, S.-K., Kim, S., & Song, K. B. (2019). Cowpea starch films containing maqui berry extract and their application in salmon packaging. Food Packaging and Shelf Life, 22, 100394. https://doi.org/10.1016/j.fpsl.2019.100394
Biswal, A. K., & Saha, S. (2019). Prolonging food shelf-life by dual actives release from multi-layered polymer particles. Colloids Surf B Biointerfaces, 175, 281-290. https://doi.org/10.1016/j.colsurfb.2018.12.004
Chavoshizadeh, S., Pirsa, S., & Mohtarami, F. (2020). Conducting/smart color film based on wheat gluten/chlorophyll/polypyrrole nanocomposite. Food Packaging and Shelf Life, 24, 100501. https://doi.org/10.1016/j.fpsl.2020.100501
Chen, H., Li, L., Ma, Y., McDonald, T. P., & Wang, Y. (2019). Development of active packaging film for food containing bioactive components encapsulated in β-cyclodextrin and its application. Food Hydrocolloids, 90, 360-366. https://doi.org/10.1016/j.foodhyd.2018.12.043
Ciannamea, E. M., Castillo, L. A., Barbosa, S. E., & De Angelis, M. G. (2018). Barrier properties and mechanical strength of bio-renewable, heat-sealable films based on gelatin, glycerol and soybean oil for sustainable food packaging. Reactive and Functional Polymers, 125, 29-36. https://doi.org/10.1016/j.reactfunctpolym.2018.02.001
Dammak, I., Lourenço, R. V., & Sobral, P. J. A. (2019). Active gelatin films incorporated with Pickering emulsions encapsulating hesperidin: Preparation and physicochemical characterization. Journal of Food Engineering, 240, 9-20. https://doi.org/10.1016/j.jfoodeng.2018.07.002
Dashipour, A., Razavilar, V., Hosseini, H., Shojaee-Aliabadi, S., German, J. B., Ghanati, K., Khakpour, M., & Khaksar, R. (2015). Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil. International Journal of Biological Macromolecules, 72, 606-613. https://doi.org/10.1016/j.ijbiomac.2014.09.006
Endres, H. J., & Siebert-Raths, A. (2012). Performance profile of biopolymers compared to conventional plastics. In M. Moeller, & K. Matyjaszewski (Eds.), Polymer science: A comprehensive reference (p. 317-353). Elsevier Science.
Estevez-Areco, S., Guz, L., Candal, R., & Goyanes, S. (2020). Active bilayer films based on cassava starch incorporating ZnO nanorods and PVA electrospun mats containing rosemary extract. Food Hydrocolloids, 108, 106054. https://doi.org/10.1016/j.foodhyd.2020.106054
Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2015). Effect of the film-processing conditions, relative humidity and ageing on wheat gluten films coated with electrospun polyhydryalkanoate. Food Hydrocolloids, 44, 292-299. https://doi.org/10.1016/j.foodhyd.2014.09.032
Galus, S., & Kadzińska, J. (2016). Whey protein edible films modified with almond and walnut oils. Food Hydrocolloids, 52, 78-86. https://doi.org/10.1016/j.foodhyd.2015.06.013
Guo, Z., Wu, X., Zhao, X., Fan, J., Lu, X., & Wang, L. (2020). An edible antioxidant film of Artemisia sphaerocephala Krasch. gum with sophora japonica extract for oil packaging. Food Packaging and Shelf Life, 24, 100460. https://doi.org/10.1016/j.fpsl.2019.100460
Hou-Yong, Y., Heng, Z., Abdalkarim, S. Y. H., Lili, Y., Jiaying, Z.; Jiping, G., & Juming, Y. (2019). Interfacial compatible poly(ethylene glycol) chains modified cellulose nanosphere as bifunctional reinforcements in green polylatic acid for food packagings. Journal of the Taiwan Institute of Chemical Engineers, 95, 583-593. https://doi.org/10.1016/j.jtice.2018.09.016
Janani, N., Zare, E. N., Salimi, F., & Makvandi, P. (2020). Antibacterial tragacanth gum-based nanocomposite films carrying ascorbic acid antioxidant for bioactive food packaging. Carbohydrate Polymers, 247, 116678. https://doi.org/10.1016/j.carbpol.2020.116678
Jiang, Q., Pei, X., Wu, L., Li, T.-T., & Lin, J.-H. (2018). UV resistance and water barrier properties of PP/PLA/MAH/TiO2 functional hybrid biocomposite films for packaging application. Advances in Polymer Technology, 37, 2971-2980. https://doi.org/10.1002/adv.21968
Kong, R., Wang, J., Cheng, M., Lu, W., Chen, M., Zhang, R., & Wang, X. (2020). Development and characterization of corn starch/PVA active films incorporated with carvacrol nanoemulsions. International Journal of Biological Macromolecules, 164, 1631-1639. https://doi.org/10.1016/j.ijbiomac.2020.08.016
Konuk Takma, D., & Korel, F. (2019). Active packaging film for foods as a carrier of black cumin essential oil: Development and effect on quality and shelf-life of chicken breast meat. Food Packaging and Shelf Life, 19, 210-217. https://doi.org/10.1016/j.fpsl.2018.11.002
Kousheh, S. A., Moradi, M., Tajik, H., & Molaei, R. (2020). Preparation of antimicrobial/ultraviolet protective bacterial nanocellulose film with carbon dots synthesized from lactic acid bacteria. International Journal of Biological Macromolecules, 155, 216-225. https://doi.org/10.1016/j.ijbiomac.2020.03.230
Li, T., Xia, N., Xu, L., Zhang, H., Zhang, H., Chi, Y., & Li, H. (2021). Preparation, characterization and application of SPI-based blend film with antioxidant activity. Food Packaging and Shelf Life, 27, 100614. https://doi.org/10.1016/j.fpsl.2020.100614
Li, Y., Ren, J., Wang, B., Lu, W., Wang, H., & Hou, W. (2020). Development of biobased multilayer films with improved compatibility between polylactic acid-chitosan as a function of transition coating of SiOx. International Journal of Biological Macromolecules, 165(Pt A), 1258-1263. https://doi.org/10.1016/j.ijbiomac.2020.10.001
Lu, L., Dai, G., Yan, L., Wang, L., Wang, L., Wang, Z., & Wei, K. (2020). In-situ low-temperature sol-gel growth of nano-cerium oxide ternary composite films for ultraviolet blocking. Optical Materials, 101, 109724. https://doi.org/10.1016/j.optmat.2020.109724
Marra, A., Silvestre, C., Duraccio, D., & Cimmino, S. (2016). Polylactic acid/zinc oxide biocomposite films for food packaging application. International Journal of Biological Macromolecules, 88, 254-262. https://doi.org/10.1016/j.ijbiomac.2016.03.039
Mohammadi, M., Mirabzadeh, S., Shahvalizadeh, R., & Hamishehkar, H. (2020). Development of novel active packaging film for foods based on whey protein isolate incorporated with chitosan nanofiber and nano-formulated cinnamon oil. International Journal of Biological Macromolecules, 149, 11-20. https://doi.org/10.1016/j.ijbiomac.2020.01.083
Mohr, L. C., Capelezzo, A. P., Baretta, C. R. D. M., Martins, M. A. P. M., Fiori, M. A., & Mello, J. M. M. (2019). Titanium dioxide nanoparticles applied as ultraviolet radiation blocker in the polylactic acid bidegradable polymer. Polymer Testing, 77, 105867. https://doi.org/10.1016/j.polymertesting.2019.04.014
Nur Amila Najwa, I. S., Mat Yusoff, M., & Nur Hanani, Z. A. (2020). Potential of Silver-Kaolin in Gelatin Composite Films as Active Food Packaging Materials. Food Packaging and Shelf Life, 26, 100564. https://doi.org/10.1016/j.fpsl.2020.100564
Oudjedi, K., Manso, S., Nerin, C., Hassissen, N., & Zaidi, F. (2019). New active antioxidant multilayer food packaging films containing Algerian Sage and Bay leaves extracts and their application for oxidative stability of fried potatoes. Food Control, 98, 216-226. https://doi.org/10.1016/j.foodcont.2018.11.018
Peighambardoust, S. J., Peighambardoust, S. H., Pournasir, N., & Mohammadzadeh Pakdel, P. (2019). Properties of active starch-based films incorporating a combination of Ag, ZnO and CuO nanoparticles for potential use in food packaging applications. Food Packaging and Shelf Life, 22, 100420. https://doi.org/10.1016/j.fpsl.2019.100420
Rasal, R. M., & Hirt, D. E. (2009). Toughness decrease of PLA-PHBHHx blend films upon surface-confined photopolymerization. Journal of Biomedical Materials Research: Part A, 88A(4), 1079-1086. https://doi.org/10.1002/jbm.a.32009
Riahi, Z., Priyadarshi, R., Rhim, J.-W., & Bagheri, R. (2021). Gelatin-based functional films integrated with grapefruit seed extract and TiO2 for active food packaging applications. Food Hydrocolloids, 112, 106314. https://doi.org/10.1016/j.foodhyd.2020.106314
Shah, M. A., Schmid, M., Aggarwal, A., & Wani, A. A. (2017). Testing and Quality Assurance of Bioplastics. In P. Singh, A. A. Wani, & H.-C. Langowski (Eds.), Food Packaging Materials: Testing & Quality Assurance (pp. 201-232). CRC Press, Taylor & Francis Group.
Sharma, S., Barkauskaite, S., Jaiswal, A. K., & Jaiswal, S. (2021). Essential oils as additives in active food packaging. Food Chemistry, 343, 128403. https://doi.org/10.1016/j.foodchem.2020.128403
Sun, J., Jiang, H., Wu, H., Tong, C., Pang, J., & Wu, C. (2020). Multifunctional bionanocomposite films based on konjac glucomannan/chitosan with nano-ZnO and mulberry anthocyanin extract for active food packaging. Food Hydrocolloids, 107, 105942. https://doi.org/10.1016/j.foodhyd.2020.105942
Swaroop, C., & Shukla, M. (2018). Nano-magnesium oxide reinforced polylactic acid films for food packaging applications. International Journal of Biological Macromolecules, 113, 729-736. https://doi.org/10.1016/j.ijbiomac.2018.02.156
Tinoco, A., Rodrigues, R. M., Machado, R., Pereira, R. N., Cavaco-Paulo, A., & Ribeiro, A. (2020). Ohmic heating as an innovative approach for the production of keratin films. International Journal of Biological Macromolecules, 150, 671-680. https://doi.org/10.1016/j.ijbiomac.2020.02.122
Vilela, C., Pinto, R. J. B., Coelho, J., Domingues, M. R. M., Daina, S., Sadocco, P., Santos, S. A. O., & Freire, C. S. R. (2017). Bioactive chitosan/ellagic acid films with UV-light protection for active food packaging. Food Hydrocolloids, 73, 120-128. https://doi.org/10.1016/j.foodhyd.2017.06.037
Vorawongsagul, S., Pratumpong, P., & Pechyen, C. (2021). Preparation and foaming behavior of poly (lactic acid)/poly (butylene succinate)/cellulose fiber composite for hot cups packaging application. Food Packaging and Shelf Life, 27, 100608. https://doi.org/10.1016/j.fpsl.2020.100608
Wang, K., Lim, P. N., Tong, S. Y., & Thian, E. S. (2019). Development of grapefruit seed extract-loaded poly(ε-caprolactone)/chitosan films for antimicrobial food packaging. Food Packaging and Shelf Life, 22, 100396. https://doi.org/10.1016/j.fpsl.2019.100396
Wen, P., Wen, Y., Huang, X., Zong, M. H., & Wu, H. (2017). Preparation and characterization of protein-loaded electrospun fiber mat and its release kinetics. Journal of Agricultural and Food Chemistry, 65(23), 4786-4796. https://doi.org/10.1021/acs.jafc.7b01830
Yadav, S., Mehrotra, G. K., & Dutta, P. K. (2021). Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging. Food Chemistry, 334, 127605. https://doi.org/10.1016/j.foodchem.2020.127605
Yalcinkaya, E. E., Puglia, D., Fortunati, E., Bertoglio, F., Bruni, G., Visai, L., & Kenny, J. M. (2017). Cellulose nanocrystals as templates for cetyltrimethylammonium bromide mediated synthesis of Ag nanoparticles and their novel use in PLA films. Carbohydrate Polymers, 157, 1557-1567. https://doi.org/10.1016/j.carbpol.2016.11.038
Yang, Z., Zhai, X., Zou, X., Shi, J., Huang, X., Li, Z., Gong, Y., Holmes, M., Povey, M., & Xiao, J. (2021). Bilayer pH-sensitive colorimetric films with light-blocking ability and electrochemical writing property: Application in monitoring crucian spoilage in smart packaging. Food Chemistry, 336, 127634. https://doi.org/10.1016/j.foodchem.2020.127634
Yuan, L., Li, S., Zhou, W., Chen, Y., Zhang, B., & Guo, Y. (2019). Effect of morin-HP-β-CD inclusion complex on anti-ultraviolet and antioxidant properties of gelatin film. Reactive and Functional Polymers, 137, 140-146. https://doi.org/10.1016/j.reactfunctpolym.2019.02.004
Zhang, X., Liu, Y., Yong, H., Qin, Y., Liu, J., & Liu, J. (2019). Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food Hydrocolloids, 94, 80-92. https://doi.org/10.1016/j.foodhyd.2019.03.009