Using smartphone for monitoring colorimetric reactions aiming at determining antioxidant activity




digital image analysis, grape juice, mobile app, antioxidants


The use of technology for antioxidant determination in foods has contributed toward enhancing the applicability of this analysis in in vitro assays. The present study sought to evaluate the activity of antioxidants in food products using the following analytical methodologies: analysis of total phenols, flavonoids, ABTS, DPPH, reducing power by potassium ferricyanide, and FRAP, using the smartphone app PhotoMetrix PRO®. These methodologies underwent analytical validation demonstrating linearity at 95% confidence interval, while residues displayed homoscedasticity and random distribution. The values obtained for the limit of detection (LOD) and limit of quantification (LOQ) were below the working range for all methodologies. The correlation coefficients obtained for the curves were above 0.99, except for the FRAP method. For the analysis, the values obtained for relative standard deviation (RSD %) for repeatability and intermediate precision were lower than 5%, except for ABTS and DPPH analysis, which presented values lower than 10%. The PhotoMetrix PRO® app has proven to be efficient for use in the analysis of whole grape juice samples, when compared to UV-VIS spectrophotometer.


Não há dados estatísticos.


Al-Nidawi, M., & Alshana, U. (2021). Reversed-phase switchable-hydrophilicity solvent liquid-liquid microextraction of copper prior to its determination by smartphone digital image colorimetry. Journal of Food Composition and Analysis, 104, 104140.

Anh-Dao, L. T., Thanh-Nho, N., Huu-Trung, B., Tien-Giang, N., Ut Dong, T., Quoc-Duy, N., Quang-Hieu, N., Le-Vy, N., Thanh-Dieu, N. T., To, D. V. T., Minh-Huy, D., & Cong-Hau, N. (2023). A portable colorimetric tool using a smartphone camera applied for determining total phenolic contents in coffee products. Chinese Journal of Analytical Chemistry, 51(3), 100228.

Association of Official Analytical Chemists (AOAC) (2016). Official methods of analysis of the Association of Official Analytical Chemists. AOAC. Retrieved from

Bazani, E. J. O., Barreto, M. S., Demuner, A. J., Santos, M. H., Cerceau, C. I., Blank, D. E., Firmino, M. J. M., Souza, G. S. F., Franco, M. O. K., Suarez, W. T., & Stringheta, P. C. (2021). Smartphone Application for Total Phenols Content and Antioxidant Determination in Tomato, Strawberry, and Coffee Employing Digital Imaging. Food Analytical Methods, 14(4), 631-640.

Berker, K. I., Güçlü, K., Tor, İ., & Apak, R. (2007). Comparative evaluation of Fe(III) reducing power-based antioxidant capacity assays in the presence of phenanthroline, batho-phenanthroline, tripyridyltriazine (FRAP), and ferricyanide reagents. Talanta, 72(3), 1157-1165.

Boroski, M., Visentainer, J. V., Cottica, S. M., & Morais, D. R. (2015). Antioxidantes: Princípios e Métodos Analíticos. Appris.

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30.

Calabria, D., Guardigli, M., Severi, P., Trozzi, I., Pace, A., Cinti, S., Zangheri, M., & Mirasoli, M. (2021). A Smartphone-Based Chemosensor to Evaluate Antioxidants in Agri-Food Matrices by In Situ AuNP Formation. Sensors, 21(16), 5432.

Caleb, J., & Alshana, U. (2021). Supramolecular solvent-liquid-liquid microextraction followed by smartphone digital image colorimetry for the determination of curcumin in food samples. Sustainable Chemistry and Pharmacy, 21, 100424.

Caleb, J., Alshana, U., & Ertaş, N. (2021). Smartphone digital image colorimetry combined with solidification of floating organic drop-dispersive liquid-liquid microextraction for the determination of iodate in table salt. Food Chemistry, 336, 127708.

Caramês, E. T. S., Alamar, P. D., & Lima Pallone, J. A. (2020). Bioactive Compounds and Antioxidant Capacity in Freeze-Dried Red Cabbage by FT-NIR and MIR Spectroscopy and Chemometric Tools. Food Analytical Methods, 13(1), 78-85.

Caramês, E. T. S., Alamar, P. D., Poppi, R. J., & Pallone, J. A. L. (2017). Rapid Assessment of Total Phenolic and Anthocyanin Contents in Grape Juice Using Infrared Spectroscopy and Multivariate Calibration. Food Analytical Methods, 10(5), 1609-1615.

Costa, V., Neiva, A., & Pereira-Filho, E. (2019). Chromium speciation in leather samples: An experiment using digital images, mobile phones and environmental concepts. Eclética Química Journal, 44(1), 62-74.

De Lourenço, E. C., De Paula, S., De Setti, G. O., Toci, A. T., Padilha, J. C., Da Silva, E. M., & Boroski, M. (2021). Determination of iron content using the PhotoMetrix PRO® application: Technology in favor of teaching chemistry. Revista Virtual de Química, 13(1), 192-206.

dos Santos, V. B., da Silva, E. K. N., de Oliveira, L. M. A., & Suarez, W. T. (2019). Low cost in situ digital image method, based on spot testing and smartphone images, for determination of ascorbic acid in Brazilian Amazon native and exotic fruits. Food Chemistry, 285, 340-346.

Dowd, L. E. (1959). Spectrophotometric Determination of Quercetin. Analytical Chemistry, 31(7), 1184-1187.

Firdaus, M. L., Aprian, A., Meileza, N., Hitsmi, M., Elvia, R., Rahmidar, L., & Khaydarov, R. (2019). Smartphone Coupled with a Paper-Based Colorimetric Device for Sensitive and Portable Mercury Ion Sensing. Chemosensors, 7(2), 25.

Helfer, G. A., Magnus, V. S., Böck, F. C., Teichmann, A., Ferrão, M. F., & Costa, A. B. da (2016). PhotoMetrix: An Application for Univariate Calibration and Principal Components Analysis Using Colorimetry on Mobile Devices. Journal of the Brazilian Chemical Society, 28(2), 328-335.

Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO) (2016). Orientação Sobre Validação de Métodos Analíticos, Brazil. INMETRO. Retrieved from

Kirigaya, N., Kato, H., & Fujimaki, M. (1971). Studies on antioxidant activity of nonenzymic browning reaction products III. Nippon Nogeikagaku Kaishi, 45(6), 292-298.

Ledesma, C. M., Krepsky, L. M., & Borges, E. M. (2019). Using a Flatbed Scanner and Automated Digital Image Analysis To Determine the Total Phenolic Content in Beer. Journal of Chemical Education, 96(10), 2315-2321.

Mahato, K., & Chandra, P. (2019). Paper-based miniaturized immunosensor for naked eye ALP detection based on digital image colorimetry integrated with smartphone. Biosensors and Bioelectronics, 128, 9-16.

Minh-Huy, D., Anh-Dao, L.-T., Thanh-Nho, N., Nhon-Duc, L., & Cong-Hau, N. (2023). Smartphone-based digital images as a low-cost and simple colorimetric approach for the assessment of total phenolic contents in several specific Vietnamese dried tea products and their liquors. Food Chemistry, 401, 134147.

Moon, J.-K., & Shibamoto, T. (2009). Antioxidant Assays for Plant and Food Components. Journal of Agricultural and Food Chemistry, 57(5), 1655-1666.

Pappis, C., Librelotto, M., Baumann, L., Parckert, A. B., Santos, R. O., Teixeira, I. D., Helfer, G. A., Lobo, E. A., & da Costa, A. Ben. (2019). Point-of-use determination of fluoride and phosphorus in water through a smartphone using the PhotoMetrix® App. Brazilian Journal of Analytical Chemistry, 6(25), 58-66.

Rice-Evans, C., & Miller, N. J. (1994). Total antioxidant status in plasma and body fluids. Methods in Enzymology, 234, 279-293.

Ribeiro, F. A. L., Ferreira, M. M. C., Morano, S. C., da Silva, L. R., & Schneider, R. P. (2008). Planilha de validação: uma nova ferramenta para estimar figuras de mérito na validação de métodos analíticos univariados. Química Nova, 31(1), 164-171.

Santos, S. D. C., Cruz, K. M. G., Costa, R., Gonçalves, I. M., Lima, R. C. C., Oliveira, S. M., Mello, A. A., Luz, E. R. (2021). Colorimetric determination of iron content in pharmaceutical formulations using a smartphone camera associated with color measurement applications. Revista Eletrônica Perspectivas da Ciência e Tecnologia, 13, 197-207.

Siddeeg, A., AlKehayez, N. M., Abu-Hiamed, H. A., Al-Sanea, E. A., & AL-Farga, A. M. (2021). Mode of action and determination of antioxidant activity in the dietary sources: An overview. Saudi Journal of Biological Sciences, 28(3), 1633-1644.

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144-158.

Stratil, P., Klejdus, B., & Kubáň, V. (2006). Determination of Total Content of Phenolic Compounds and Their Antioxidant Activity in VegetablesEvaluation of Spectrophotometric Methods. Journal of Agricultural and Food Chemistry, 54(3), 607-616.

Thongsuk, P., & Sameenoi, Y. (2022). Colorimetric determination of radical scavenging activity of antioxidants using Fe3O4 magnetic nanoparticles. Arabian Journal of Chemistry, 15(1), 103475.

Vallejos, S., Moreno, D., Ibeas, S., Muñoz, A., García, F. C., & García, J. M. (2019). Polymeric chemosensor for the colorimetric determination of the total polyphenol index (TPI) in wines. Food Control, 106, 106684.

Zheng, S., Li, H., Fang, T., Bo, G., Yuan, D., & Ma, J. (2022). Towards citizen science. On-site detection of nitrite and ammonium using a smartphone and social media software. Science of The Total Environment, 815, 152613.




Como Citar

PEDROSO, D. de Q., KNAUL, L. E., KAPP, M. N., GONÇALVES, C. da C. S., & BOROSKI, M. (2024). Using smartphone for monitoring colorimetric reactions aiming at determining antioxidant activity . Food Science and Technology, 44.



Artigos Originais