Antioxidant activity of palm kernel meal protein hydrolysate and characterization of its peptide profile
DOI:
https://doi.org/10.5327/fst.18923Palavras-chave:
palm kernel meal, protein hydrolysate, antioxidant activity, cytoprotective effectResumo
Palm kernel meal (PKM) is a major by-product of the palm oil industry, and its high protein content is a potential source of value-added functional food or feed. In this study, the total protein from PKM was isolated and hydrolyzed with alcalase enzyme (pH 7.5, 55oC) to obtain palm kernel protein hydrolysate. The results showed that PKM protein hydrolysate after 60 min of hydrolysis exhibited strong radical scavenging activity with IC50 values of 5.73±0.23 and 7.84±0.90 μg/mL as determined by 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), respectively. Furthermore, PKM protein hydrolysate was not toxic to mouse L929 fibroblast cells while protecting cells from H2O2-induced oxidative damage. Analysis of its peptide profile by liquid chromatography-mass spectrometry (LC-MS/MS) revealed nine peptide sequences with hydrophobic and negatively-charged amino acids with molecular weights ranging from 1,085.13 to 1,292.32 Da. Taken together, alcalase hydrolysate of PKM was found to have potent antioxidant and cytoprotective properties justifying further study for potential development as a functional food/feed.
Downloads
Referências
Alshelmani, M., Loh, T., Foo, H., Sazili, A., & Lau, W. (2016). Effect of feeding different levels of palm kernel cake fermented by Paenibacillus polymyxa ATCC 842 on nutrient digestibility, intestinal morphology, and gut microflora in broiler chickens. Animal Feed Science and Technology, 216, 216-224. https://doi.org/10.1016/j.anifeedsci.2016.03.019
Amagliani, L., O'Regan, J., Kelly, A. L., & O'Mahony, J. A. (2017). The composition, extraction, functionality and applications of rice proteins: A review. Trends in Food Science & Technology, 64, 1-12. https://doi.org/10.1016/j.tifs.2017.01.008
Cai, S.-Y., Wang, Y.-M., Zhao, Y.-Q., Chi, C.-F., & Wang, B. (2019). Cytoprotective Effect of Antioxidant Pentapeptides from the Protein Hydrolysate of Swim Bladders of Miiuy Croaker (Miichthys miiuy) against H2O2-Mediated Human Umbilical Vein Endothelial Cell (HUVEC) Injury. International Journal of Molecular Sciences, 20(21), 5425. https://doi.org/10.3390/ijms20215425
Chang, S. K., Hamajima, H., Ismail, A., Yanagita, T., Mohd Esa, N., & Baharuldin, M. T. H. (2014). Cytotoxicity effect of oil palm (Elaeis guineensis) kernel protein hydrolysates. International Food Research Journal, 21(3), 909-914. Retrieved from http://www.ifrj.upm.edu.my
Chen, H. J., Dai, F. J., Chen, C. Y., Fan, S. L., Zheng, J. H., Huang, Y. C., Chau, C. F., Lin, Y. S., & Chen, C. S. (2021). Evaluating the antioxidants, whitening and antiaging properties of rice protein hydrolysates. Molecules, 26(12), 3605. https://doi.org/10.3390/molecules26123605
Ciapetti, G., Cenni, E., Pratelli, L., & Pizzoferrato, A. (1993). In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials, 14(5), 359-364. https://doi.org/10.1016/0142-9612(93)90055-7
Coelho, M. S., Soares-Freitas, R. A. M., Arêas, J. A. G., Gandra, E. A., & Salas-Mellado, M. M. (2018). Peptides from chia present antibacterial activity and inhibit cholesterol synthesis. Plant Foods for Human Nutrition, 73, 101-107. https://doi.org/10.1007/s11130-018-0668-z
de Oliveira, C. F., Corrêa, A. P. F., Coletto, D., Daroit, D. J., Cladera-Olivera, F., & Brandelli, A. (2014). Soy protein hydrolysis with microbial protease to improve antioxidant and functional properties. Journal of Food Science and Technology, 52, 2668-2678. https://doi.org/10.1007/s13197-014-1317-7
Doucet, D., Gauthier, S. F., Otter, D. E., & Foegeding, E. A. (2003). Enzyme-induced gelation of extensively hydrolyzed whey proteins by alcalase: comparison with the plastein reaction and characterization of interactions. Journal of Agricultural and Food Chemistry, 51(21), 6300-6308. https://doi.org/10.1021/jf026242v
Esfandi, R., Walters, M. E., & Tsopmo, A. (2019). Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon, 5(4), e01538. https://doi.org/10.1016/j.heliyon.2019.e01538
Ezieshi, E. V., & Olomu, J. M. (2007). Nutritional evaluation of palm kernel meal types: 1. Proximate composition and metabolizable energy values. African Journal of Biotechnology, 6(21), 2484-2486. https://doi.org/10.5897/AJB2007.000-2393
Girgih, A. T., Udenigwe, C. C., & Aluko, R. E. (2013). Reverse-phase HPLC Separation of Hemp Seed (Cannabis sativa L.) Protein Hydrolysate Produced Peptide Fractions with Enhanced Antioxidant Capacity. Plant Foods for Human Nutrition, 68, 39-46. https://doi.org/10.1007/s11130-013-0340-6
He, Y., Pan, X., Chi, C.-F., Sun, K.-L., & Wang, B. (2019). Ten new pentapeptides from protein hydrolysate of miiuy croaker (Miichthys miiuy) muscle: Preparation, identification, and antioxidant activity evaluation. LWT, 105, 1-8. https://doi.org/10.1016/j.lwt.2019.01.054
Jamdar, S. N., Rajalakshmi, V., Pednekar, M., Juan, F., Yardi, V., & Sharma, A. (2010). Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chemistry, 121(1), 178-184. https://doi.org/10.1016/j.foodchem.2009.12.027
Jiménez, A., Selga, A., Torres, J. L., & Julià, L. (2004). Reducing activity of polyphenols with stable radicals of the TTM series. Electron transfer versus H-abstraction reactions in flavan-3-ols. Organic Letters, 6(24), 4583-4586. https://doi.org/10.1021/ol048015f
Kapel, R., Rahhou, E., Lecouturier, D., Guillochon, D., & Dhulster, P. (2006). Characterization of an antihypertensive peptide from an Alfalfa white protein hydrolysate produced by a continuous enzymatic membrane reactor. Process Biochemistry, 41(9), 1961-1966. https://doi.org/10.1016/j.procbio.2006.04.019
Karami, Z., & Akbari-Adergani, B. (2019). Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. Journal of Food Science and Technology, 56, 535-547. https://doi.org/10.1007/s13197-018-3549-4
Kong, X., Guo, M., Hua, Y., Cao, D., & Zhang, C. (2008). Enzymatic preparation of immunomodulating hydrolysates from soy proteins. Bioresource Technology, 99(18), 8873-8879. https://doi.org/10.1016/j.biortech.2008.04.056
Laguerre, M., López Giraldo, L. J., Lecomte, J., Figueroa-Espinoza, M.-C., Baréa, B., Weiss, J., Decker, E. A., & Villeneuve, P. (2010). Relationship between Hydrophobicity and Antioxidant Ability of “Phenolipids” in Emulsion: A Parabolic Effect of the Chain Length of Rosmarinate Esters. Journal of Agricultural and Food Chemistry, 58(5), 2869-2876. https://doi.org/10.1021/jf904119v
Lambeth, J. D. (2007). Nox enzymes, ROS, and chronic disease: An example of antagonistic pleiotropy. Free Radical Biology and Medicine, 43(3), 332-347. https://doi.org/10.1016/j.freeradbiomed.2007.03.027
Li, Y., Wang, R., Li, Y., Sun, G., & Mo, H. (2022). Protective effects of tree peony seed protein hydrolysate on Cd-induced oxidative damage, inflammation and apoptosis in zebrafish embryos. Fish & Shellfish Immunology, 126, 292-302. https://doi.org/10.1016/j.fsi.2022.05.033
Linder, M., Fanni, J., Parmentier, M., Sergent, M., & Phan‐Tan‐Luu, R. (1995). (1995). Protein recovery from veal bones by enzymatic hydrolysis. Journal of Food Science, 60(5), 949-952. https://doi.org/10.1111/j.1365-2621.1995.tb06268.x
Linley, E., Denyer, S. P., McDonnell, G., Simons, C., & Maillard, J. Y. (2012). Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. Journal of Antimicrobial Chemotherapy, 67(7), 1589-1596. https://doi.org/10.1093/jac/dks129
Liu, C., Ren, D., Li, J., Fang, L., Wang, J., Liu, J., & Min, W. (2018). Cytoprotective effect and purification of novel antioxidant peptides from hazelnut (C. heterophylla Fisch) protein hydrolysates. Journal of Functional Foods, 42, 203-215. https://doi.org/10.1016/j.jff.2017.12.003
Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8), 118-126. https://doi.org/10.4103/0973-7847.70902
Mechmeche, M., Kachouri, F., Ksontini, H., & Hamdi, M. (2017). Production of bioactive peptides from tomato seed isolate by Lactobacillus plantarum fermentation and enhancement of antioxidant activity. Food Biotechnology, 31(2), 94-113. https://doi.org/10.1080/08905436.2017.1302888
Memarpoor, Y. M., Mahaki, H., & Zare-Zardini, H. (2013). Antioxidant activity of protein hydrolysates and purified peptides from Zizyphus jujuba fruits. Journal of Functional Foods, 5(1), 62-70. https://doi.org/10.1016/j.jff.2012.08.004
Ng, K. L., Ayob, M. K., Said, M., Osman, M. A., & Ismail, A. (2013). Optimization of enzymatic hydrolysis of palm kernel cake protein (PKCP) for producing hydrolysates with antiradical capacity. Industrial Crops and Products, 43, 725-731. https://doi.org/10.1016/j.indcrop.2012.08.017
Ng, K. L., Tan, Y-N., Osman, M., Rajab, N. F., & Ee, K.-Y. (2022). Characterization, antioxidant, ACE inhibition and toxicity evaluations of palm kernel cake-derived Alcalase® hydrolysate. Food Science and Technology, 42, e80421. https://doi.org/10.1590/fst.80421
Ngo, D. H., Qian, Z. J., Ryu, B., Park, J. W., & Kim, S. K. (2010). In vitro antioxidant activity of a peptide isolated from Nile tilapia (Oreochromis niloticus) scale gelatin in free radical-mediated oxidative systems. Journal of Functional Foods, 2(2), 107-117. https://doi.org/10.1016/j.jff.2010.02.001
Nielsen, P., Petersen, D., & Dambmann, C. (2001). Improved method for determining food protein degree of hydrolysis. Journal of Food Science, 66(5), 642-646. https://doi.org/10.1111/j.1365-2621.2001.tb04614.x
Noble, J. E., Knight, A. E., Reason, A. J., Matola, A. D., & Bailey, M. J. A. (2007). A Comparison of Protein Quantitation Assays for Biopharmaceutical Applications. Molecular Biotechnology, 37, 99-111. https://doi.org/10.1007/s12033-007-0038-9
Okeudo, N., Eboh, K., Izugboekwe, N. V., & Akanno, E. (2005). Growth rate, carcass characteristics and organoleptic quality of broiler fed graded levels of palm kernel cake. International Journal of Poultry Science, 4(5), 330-333. https://doi.org/10.3923/ijps.2005.330.333
Onoja, E., Chandren, S., Abdul Razak, F. I., Mahat, N. A., & Wahab, R. A. (2019). Oil palm (Elaeis guineensis) biomass in Malaysia: the present and future prospects. Waste and Biomass Valorization, 10(8), 2099-2117. https://doi.org/10.1007/s12649-018-0258-1
Pazinatto, C., Malta, L. G., Pastore, G. M., & Maria Netto, F. (2013). Antioxidant capacity of amaranth products: effects of thermal and enzymatic treatments. Food Science and Technology, 33(3), 485-493. https://doi.org/10.1590/S0101-20612013005000076
Rajapakse, N., Mendis, E., Jung, W. K., Je, J. Y., & Kim, S. K. (2005). Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Research International, 38(2), 175-182. https://doi.org/10.1016/j.foodres.2004.10.002
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Reinmuth-Selzle, K. T., Tchipilov, A. T., Backes, G., Tscheuschner, K., Tang, K., Ziegler, K., Lucas, U., Pöschl, J., Fröhlich-Nowoisky, M. G., & Weller. (2022). Determination of the protein content of complex samples by aromatic amino acid analysis, liquid chromatography-UV absorbance, and colorimetry. Analytical and Bioanalytical Chemistry, 414(15), 4457-4470. https://doi.org/10.1007/s00216-022-03910-1
Sabeena Farvin, K. H., Andersen, L. L., Otte, J., Nielsen, H. H., Jessen, F., & Jacobsen, C. (2016). Antioxidant activity of cod (Gadus morhua) protein hydrolysates: Fractionation and characterisation of peptide fractions. Food Chemistry, 204, 409-419. https://doi.org/10.1016/j.foodchem.2016.02.145
Simpson, D. S. A., & Oliver, P. L. (2020). ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants, 9(8), 743. https://doi.org/10.3390/antiox9080743
Sonklin, C., Laohakunjit, N., & Kerdchoechuen, O. (2018). Assessment of antioxidant properties of membrane ultrafiltration peptides from mungbean meal protein hydrolysates. PeerJ, 6, e5337. https://doi.org/10.7717/peerj.5337
Sonklin, C., Laohakunjit, N., Kerdchoechuen, O., & Ratanakhanokchai, K. (2017). Volatile flavour compounds, sensory characteristics and antioxidant activities of mungbean meal protein hydrolysed by bromelain. Journal of Food Science and Technology, 55, 265-277. https://doi.org/10.1007/s13197-017-2935-7
Thamnarathip, P., Jangchud, K., Nitisinprasert, S., & Vardhanabhuti, B. (2016). Identification of peptide molecular weight from rice bran protein hydrolysate with high antioxidant activity. Journal of Cereal Science, 69, 329-335. https://doi.org/10.1016/j.jcs.2016.04.011
Tonolo, F., Folda, A., Cesaro, L., Scalcon, V., Marin, O., Ferro, S., Bindoli, A., & Rigobello, MP. (2020). Milk-derived bioactive peptides exhibit antioxidant activity through the Keap1-Nrf2 signaling pathway. Journal of Functional Foods, 64, 103696. https://doi.org/10.1016/j.jff.2019.103696
Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry & Cell Biology, 39(1), 44-84. https://doi.org/10.1016/j.biocel.2006.07.001
Vavrusova, M., Pindstrup, H., Johansen, L. B., Andersen, M. L., Andersen, H. J., & Skibsted, L. H. (2015). Characterisation of a whey protein hydrolysate as antioxidant. International Dairy Journal, 47, 86-93. https://doi.org/10.1016/j.idairyj.2015.02.012
Verma, A. K., Chatli, M. K., Kumar, P., & Mehta, N. (2017). Antioxidant and antimicrobial activity of protein hydrolysate extracted from porcine liver. Indian Journal of Animal Sciences, 87(6), 711-171. https://doi.org/10.56093/ijans.v87i6.71070
Xu, Y., Galanopoulos, M., Sismour, E., Ren, S., Mersha, Z., Lynch, P., & Almutaimi, A. (2020). Effect of enzymatic hydrolysis using endo- and exo-proteases on secondary structure, functional, and antioxidant properties of chickpea protein hydrolysates. Journal of Food Measurement and Characterization, 14, 343-352. https://doi.org/10.1007/s11694-019-00296-0
You, L., Zhao, M., Cui, C., Zhao, H., & Yang, B. (2009). Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innovative Food Science & Emerging Technologies, 10(2), 235-240. https://doi.org/10.1016/j.ifset.2008.08.007
Zarei, M., Ebrahimpour, A., Abdul-Hamid, A., Anwar, F., Bakar, F. A., Philip, R., & Saari, N. (2014). Identification and characterization of papain-generated antioxidant peptides from palm kernel cake proteins. Food Research International, 62, 726-734. https://doi.org/10.1016/j.foodres.2014.04.041
Zarei, M., Ebrahimpour, A., Abdul-Hamid, A., Anwar, F., & Saari, N. (2012). Production of defatted palm kernel cake protein hydrolysate as a valuable source of natural antioxidants. International Journal of Molecular Sciences, 13(7), 8097-8111. https://doi.org/10.3390/ijms13078097
Zhang, Q., Tong, X., Li, Y., Wang, H., Wang, Z., Qi, B., Sui, X., & Jiang, L. (2019). Purification and Characterization of Antioxidant Peptides from Alcalase-Hydrolyzed Soybean (Glycine max L.) Hydrolysate and Their Cytoprotective Effects in Human Intestinal Caco-2 Cells. Journal of Agricultural and Food Chemistry, 67(20), 5772-5781. https://doi.org/10.1021/acs.jafc.9b01235
Zhu, S., Du, C., Yu, T., Cong, X., Liu, Y., Chen, S., & Li, Y. (2019). Antioxidant activity of selenium‐enriched peptides from the protein hydrolysate of Cardamine violifolia. Journal of Food Science, 84(12), 3504-3511. https://doi.org/10.1111/1750-3841.14843