Characterization of in vitro antagonistic activity of Lactobacillus helveticus DLBSA201 and DLBSA202 against Escherichia coli 0157:H7
DOI:
https://doi.org/10.5327/fst.129522Palavras-chave:
lactic acid bacteria, Escherichia coli O157:H7, probiotic, inflammation, intestinal barrierResumo
Lactobacillus helveticus DLBSA201 and DLBSA202 were investigated for their potential probiotic traits and protective effects against Escherichia coli O157:H7. The survival rate of DLBSA201 and DLBSA202 after being exposed to acid and bile salt was relatively high, although no bile salt hydrolase activity was detected. Both strains also demonstrated an outstanding ability to adhere to intestinal epithelial cells. A combination of DLBSA201 and DLBSA202 could interfere with the growth of E. coli O157:H7. Furthermore, DLBSA201 and DLBSA202 also exhibited the ability to remove pre-adhered E. coli O157:H7 on intestinal cells. Those strains were able to lower pro-inflammatory genes [TLR-4, tumor necrosis factor-α (TNF-α), and interleukin-8 (IL-8)] in lipopolysaccharides (LPS)-treated intestinal epithelial cells. In addition, the upregulation of occludin and ZO-1 genes by DLBSA201 and DLBSA202 also ameliorates the disruption of the intestinal barrier caused by LPS. The above results suggest that DLBSA201 and DLBSA202 association appear as promising probiotic candidates with the potential to prevent and treat intestinal disease caused by E. coli O157:H7.
Downloads
Referências
Alcantara, C., Crespo, A., Solis, C. L. S., Devesa, V., Velez, D., Monedero, V., Zúñiga, M. (2020). Lipoteichoic acid depletion in Lactobacillus impacts cell morphology and stress response but does not abolish mercury surface binding. Benef Microbes, 11(8), 791-802. https://doi.org/10.3920/BM2019.0184
Bhat, M. I., Sowmya, K., Kapila, S., & Kapila, R. (2020). Potential Probiotic Lactobacillus rhamnosus (MTCC-5897) Inhibits Escherichia coli Impaired Intestinal Barrier Function by Modulating the Host Tight Junction Gene Response. Probiotics Antimicrob Proteins, 12(3), 1149-1160. https://doi.org/10.1007/s12602-019-09608-8
Browne, A. J., Kashef Hamadani, B. H., Kumaran, E. A. P., Rao, P., Longbottom, J., Harriss, E., Moore, C. E., Dunachie, S., Basnyat, B., Baker, S., Lopez, A. D., Day, N. P. J., Hay, S. I., & Dolecek, C. (2020). Drug-resistant enteric fever worldwide, 1990 to 2018: a systematic review and meta-analysis. BMC Medicine, 18(1), 1. https://doi.org/10.1186/s12916-019-1443-1
Bu, Y., Liu, Y., Liu, Y., Wang, S., Liu, Q., Hao, H., Yi, H. (2022). Screening and Probiotic Potential Evaluation of Bacteriocin-Producing Lactiplantibacillus plantarum In Vitro. Foods, 11(11), 1575. https://doi.org/10.3390/foods11111575
Bustos, A. Y., Valdez, G. F. d., Fadda, S., & Taranto, M. P. (2018). New insights into bacterial bile resistance mechanisms: the role of bile salt hydrolase and its impact on human health. Food Research International, 112, 250-262. https://doi.org/10.1016/j.foodres.2018.06.035
Byakika, S., Mukisa, I. M., Byaruhanga, Y. B., & Muyanja, C. (2019). A Review of Criteria and Methods for Evaluating the Probiotic Potential of Microorganisms. Food Reviews International, 35(5), 427-466. https://doi.org/10.1080/87559129.2019.1584815
Delley, M., Bruttin, A., Richard, M., Affolter, M., Rezzonico, E., & Bruck, W. M. (2015). In vitro activity of commercial probiotic Lactobacillus strains against uropathogenic Escherichia coli. FEMS Microbiology Letters, 362(13), fnv096. https://doi.org/10.1093/femsle/fnv096
Esteban-Fernandez, A., Ferrer, M. D., Zorraquin-Pena, I., Lopez-Lopez, A., Moreno-Arribas, M. V., & Mira, A. (2019). In vitro beneficial effects of Streptococcus dentisani as potential oral probiotic for periodontal diseases. Journal of Periodontology, 90(11), 1346-1355. https://doi.org/10.1002/JPER.18-0751
European Food Safety Authority & European Centre for Disease, Prevention and Control (2020). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA Journal, 18(3), e06007. https://doi.org/10.2903/j.efsa.2020.6007
Fonseca, H. C., de Sousa Melo, D., Ramos, C. L., Dias, D. R., & Schwan, R. F. (2021). Probiotic Properties of Lactobacilli and Their Ability to Inhibit the Adhesion of Enteropathogenic Bacteria to Caco-2 and HT-29 Cells. Probiotics and Antimicrobial Proteins, 13(1), 102-112. https://doi.org/10.1007/s12602-020-09659-2
Food and Drug Administration (FDA) (2018). GRAS notice 758 for Lactobacillus helveticus Rosell®-52 (R0052), Bifidobacterium longum ssp. Infantis Rosell®-33 (R0033), and Bifidobacterium bifidum Rosell®-71 (R0071). Retrieved from https://www.fda.gov/media/122558/download
Gorreja, F., & Walker, W. A. (2022). The potential role of adherence factors in probiotic function in the gastrointestinal tract of adults and pediatrics: a narrative review of experimental and human studies. Gut Microbes, 14(1), 2149214. https://doi.org/10.1080/19490976.2022.2149214
Hai, D., Lu, Z., Huang, X., Lv, F., & Bie, X. (2021). In Vitro Screening of Chicken-Derived Lactobacillus Strains that Effectively Inhibit Salmonella Colonization and Adhesion. Foods, 10(3), 569. https://doi.org/10.3390/foods10030569
Ho, S. W., El-Nezami, H., & Shah, N. P. (2020). The protective effects of enriched citrulline fermented milk with Lactobacillus helveticus on the intestinal epithelium integrity against Escherichia coli infection. Science Reports, 10(1), 499. https://doi.org/10.1038/s41598-020-57478-w
Horackova, S., Vesela, K., Klojdova, I., Bercikova, M., & Plockova, M. (2020). Bile salt hydrolase activity, growth characteristics and surface properties in Lactobacillus acidophilus. European Food Research and Technology, 246, 1627-1636. https://doi.org/10.1007/s00217-020-03518-8
Ibrahim, S. A., Bor, T., Song, D., & Tajkarimi, M. (2011). Survival and Growth Characteristics of Escherichia coli O157:H7 in Pomegranate-Carrot and Pomegranate-Apple Blend Juices. Food and Nutrition Sciences, 2(8), 844-851. https://doi.org/10.4236/fns.2011.28116
Ira, M. (2019). Menengok Perkembangan Diare di Indonesia. Retrieved from https://mediakom.kemkes.go.id/2019/08/menengok-perkembangan-diare-di-indonesia/
Ishaque, S. M., Khosruzzaman, S. M., Ahmed, D. S., & Sah, M. P. (2018). A randomized placebo-controlled clinical trial of a multi-strain probiotic formulation (Bio-KultI) in the management of diarrhea-predominant irritable bowel syndrome. BMC Gastroenterology, 18(1), 71. https://doi.org/10.1186/s12876-018-0788-9
Jankowska, A., Laubitz, D., Antushevich, H., Zabielski, R., & Grzesiuk, E. (2008). Competition of Lactobacillus paracasei with Salmonella enterica for adhesion to Caco-2 cells. Journal of Biomedicine and Biotechnology, 2008, 357964. https://doi.org/10.1155/2008/357964
Jayashree, S., Karthikeyan, R., Nithyalakshmi, S., Ranjani, J., Gunasekaran, P., & Rajendhran, J. (2018). Anti-adhesion Property of the Potential Probiotic Strain Lactobacillus fermentum 8711 Against Methicillin-Resistant Staphylococcus aureus (MRSA). Frontiers in Microbiology, 9, 411. https://doi.org/10.3389/fmicb.2018.00411
Jung, J. Y., Han, S. S., Kim, Z. H., Kim, M. H., Kang, H. K., Jin, H. M., Lee, M. H. (2021). In-Vitro Characterization of Growth Inhibition against the Gut Pathogen of Potentially Probiotic Lactic Acid Bacteria Strains Isolated from Fermented Products. Microorganisms, 9(10), 2141. https://doi.org/10.3390/microorganisms9102141
Kim, S. H., Kim, W. J., & Kang, S.-S. (2019). Inhibitory effect of bacteriocin-producing Lactobacillus brevis DF01 and Pediococcus acidilactici K10 isolated from kimchi on enteropathogenic bacterial adhesion. Food Bioscience, 30, 100425. https://doi.org/10.1016/j.fbio.2019.100425
Kim, W. J., Hyun, J. H., Lee, N. K., & Paik, H. D. (2022). Protective Effects of a Novel Lactobacillus brevis Strain with Probiotic Characteristics against Staphylococcus aureus Lipoteichoic Acid-Induced Intestinal Inflammatory Response. Journal of Microbiology and Biotechnology, 32(2), 205-211. https://doi.org/10.4014/jmb.2110.10034
King, S., Tancredi, D., Lenoir-Wijnkoop, I., Gould, K., Vann, H., Connors, G., Sanders, M. E., Linder, J. A., Shane, A. L., & Merenstein, D. (2018). Does probiotic consumption reduce antibiotic utilization for common acute infections? A systematic review and meta-analysis. European Journal of Public Health, 29(3), 494-499. https://doi.org/10.1093/eurpub/cky185
Li, H., Xie, X., Li, Y., Chen, M., Xue, L., Wang, J., Zhang, J., Wu, S., Ye, Q., Zhang, S., Yang, R., Zhao, H., Wu, L., Liang, T., Ding, Y. & Wu, Q. (2021). Pediococcus pentosaceus IM96 Exerts Protective Effects against Enterohemorrhagic Escherichia coli O157:H7 Infection In Vivo. Foods, 10(12), 2945. https://doi.org/10.3390/foods10122945
Lu, Y., Aizhan, R., Yan, H., Li, X., Wang, X., Yi, Y., Shan, Y., Liu, B., Zhou, Y., & Lü, X. (2020). Characterization, modes of action, and application of a novel broad-spectrum bacteriocin BM1300 produced by Lactobacillus crustorum MN047. Brazilian Journal of Microbiology, 51(4), 2033-2048. https://doi.org/10.1007/s42770-020-00311-3
Ma, L., Xu, X., Peng, Q., Yang, S., Zhang, Y., Tian, D., Shi, L., Qiao, Y., Shi, B. (2022). Exopolysaccharide from Lactobacillus casei NA-2 attenuates Escherichia coli O157:H7 surface adhesion via modulation of membrane surface properties and adhesion-related gene expression. Microbial Pathogenesis, 173(Part A), 105863. https://doi.org/10.1016/j.micpath.2022.105863
Madempudi, R. S., Ahire, J. J., Neelamraju, J., Tripathi, A., & Nanal, S. (2019). Efficacy of UB0316, a multi-strain probiotic formulation in patients with type 2 diabetes mellitus: A double blind, randomized, placebo controlled study. PloS One, 14(11), e0225168. https://doi.org/10.1371/journal.pone.0225168
Mekonnen, S. A., Merenstein, D., Fraser, C. M., & Marco, M. L. (2020). Molecular mechanisms of probiotic prevention of antibiotic-associated diarrhea. Current Opinion in Biotechnology, 61, 226-234. https://doi.org/10.1016/j.copbio.2020.01.005
Mendonca, A. A., Pinto-Neto, W. P., da Paixao, G. A., Santos, D. D. S., De Morais, M. A., Jr., & De Souza, R. B. (2022). Journey of the Probiotic Bacteria: Survival of the Fittest. Microorganisms, 11(1), 95. https://doi.org/10.3390/microorganisms11010095
Missaoui, J., Saidane, D., Mzoughi, R., & Minervini, F. (2019). Fermented Seed“ (“Zgou”ou”) from Aleppo Pine as a Novel Source of Potentially Probiotic Lactic Acid Bacteria. Microorganisms, 7(12), 709. https://doi.org/10.3390/microorganisms7120709
Monteagudo-Mera, A., Rastall, R. A., Gibson, G. R., Charalampopoulos, D., & Chatzifragkou, A. (2019). Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Applied Microbiology and Biotechnology, 103(16), 6463-6472. https://doi.org/10.1007/s00253-019-09978-7
Noviardi, H., Iswantini, D., Mulijani, S., Wahyudi, S. T., & Khusniati, T. (2022). Anti-inflammatory and immunostimulant therapy with Lactobacillus fermentum and Lactobacillus plantarum in COVID-19: A literature review. Borneo Journal of Pharmacy, 5(3). https://doi.org/10.33084/bjop.v5i3.3367
Ostadzadeh, M., Habibi Najafi, M. B., & Ehsani, M. R. (2023). Lactic acid bacteria isolated from traditional Iranian butter with probiotic and cholesterol-lowering properties: In vitro and in situ activity. Food Science and Nutrition, 11(1), 350-363. https://doi.org/10.1002/fsn3.3066
Ozkan, E. R., Demirci, T., Ozturk, H. I., & Akin, N. (2021). Screening Lactobacillus strains from artisanal Turkish goatskin casing Tulum cheeses produced by nomads via molecular and in vitro probiotic characteristics. Journal of the Science of Food and Agriculture, 101(7), 2799-2808. https://doi.org/10.1002/jsfa.10909
Pavli, F. G., Argyri, A. A., Papadopoulou, O. S., Nychas, G.-J. E., Chorianopoulos, N. G., & Tassou, C. C. (2016). Probiotic Potential of Lactic Acid Bacteria from Traditional Fermented Dairy and Meat Products: Assessment by In Vitro Tests and Molecular Characterization. Journal of Probiotics & Health, 4(3), 1000157. https://doi.org/10.4172/2329-8901.1000157
Pino, A., Bartolo, E., Caggia, C., Cianci, A., & Randazzo, C. L. (2019). Detection of vaginal lactobacilli as probiotic candidates. Science Reports, 9(1), 3355. https://doi.org/10.1038/s41598-019-40304-3
Qiao, Z., Chen, J., Zhou, Q., Wang, X., Shan, Y., Yi, Y., Liu, B., Zhou, Y., Lü, X. (2021). Purification, characterization, and mode of action of a novel bacteriocin BM173 from Lactobacillus crustorum MN047 and its effect on biofilm formation of Escherichia coli and Staphylococcus aureus. Journal of Dairy Science, 104(2), 1474-1483. https://doi.org/10.3168/jds.2020-18959
Raheem, A., Liang, L., Zhang, G., & Cui, S. (2021). Modulatory Effects of Probiotics During Pathogenic Infections With Emphasis on Immune Regulation. Frontiers in Immunology, 12, 616713. https://doi.org/10.3389/fimmu.2021.616713
Sadeghi, M., Panahi, B., Mazlumi, A., Hejazi, M. A., Komi, D. E. A., & Nami, Y. (2022). Screening of potential probiotic lactic acid bacteria with antimicrobial properties and selection of superior bacteria for application as biocontrol using machine learning models. LWT – Food Science and Technology, 162, 113471. https://doi.org/10.1016/j.lwt.2022.113471
Setyarini, W., Raharjo, D., Arizandy, R. Y., Pamoengkas, Z., Sudarmo, S. M., Athiyyah, A. F., Shirakawa, T. (2020). Molecular detection of a new pathotype enteroaggregative hemorrhagic Escherichia coli (EAHEC) in Indonesia, 2015. Infectious Disease Reports, 12(Suppl. 1), 8745. https://doi.org/10.4081/idr.2020.8745
Syahrul, F., Wahyuni, C. U., Notobroto, H. B., Wasito, E. B., Adi, A. C., & Dwirahmadi, F. (2020). Transmission Media of Foodborne Diseases as an Index Prediction of Diarrheagenic Escherichia coli: Study at Elementary School, Surabaya, Indonesia. International Journal of Environmental Research and Public Health, 17(21), 8227. https://doi.org/10.3390/ijerph17218227
Tjandrawinata, R. R., Kartawijaya, M., & Hartanti, A. W. (2022). In vitro Evaluation of the Anti-hypercholesterolemic Effect of Lactobacillus Isolates From Various Sources. Frontiers in Microbiology, 13, 825251. https://doi.org/10.3389/fmicb.2022.825251
Tsai, C. C., Lin, P. P., Hsieh, Y. M., Zhang, Z. Y., Wu, H. C., & Huang, C. C. (2014). Cholesterol-lowering potentials of lactic acid bacteria based on bile-salt hydrolase activity and effect of potent strains on cholesterol metabolism in vitro and in vivo. ScientificWorldJournal, 2014, 690752. https://doi.org/10.1155/2014/690752
Wan, M. L. Y., Forsythe, S. J., & El-Nezami, H. (2019). Probiotics interaction with foodborne pathogens: a potential alternative to antibiotics and future challenges. Critical Reviews in Food Science and Nutrition, 59(20), 3320-3333. https://doi.org/10.1080/10408398.2018.1490885
Waturangi, D. E., Hudiono, F., & Aliwarga, E. (2019). Prevalence of pathogenic Escherichia coli from salad vegetable and fruits sold in Jakarta. BMC Research Notes, 12(1), 247. https://doi.org/10.1186/s13104-019-4284-2
Xing, T. L., Bian, X., Ma, C. M., Yang, Y., Liu, X. F., Wang, Y., Fan, J., & Zhang, N. (2023). In vitro evaluation of probiotic properties of Lactobacillus acidophilus AD125 and antagonism against Escherichia coli O157:H7 adhesion to Caco-2 cell. Food & Function, 14(5), 2472-2480. https://doi.org/10.1039/d2fo03200g
Xu, Y., Zhu, T., Tang, H., Li, X., Chen, Y., Zhang, L., Zhang, J. (2020). Probiotic potential and amylolytic properties of lactic acid bacteria isolated from Chines fermented cereal foods. Food Control, 111, 107057. https://doi.org/10.1016/j.foodcont.2019.107057
Yu, H., Ding, X., Shang, L., Zeng, X., Liu, H., Li, N., Huang, S., Wang, Y., Wang, G., Cai, S., Chen, M., Levesque, C. L., Johnston, L. J., & Qiao, S. (2018). Protective Ability of Biogenic Antimicrobial Peptide Microcin J25 Against Enterotoxigenic Escherichia Coli-Induced Intestinal Epithelial Dysfunction and Inflammatory Responses IPEC-J2 Cells. Frontiers in Cellular and Infection Microbiology, 8, 242. https://doi.org/10.3389/fcimb.2018.00242
Yu, Y., Zong, M., Lao, L., Wen, J., Pan, D., & Wu, Z. (2022). Adhesion properties of cell surface proteins in Lactobacillus strains in the GIT environment. Food & Function, 13(6), 3098-3109. https://doi.org/10.1039/d1fo04328e
Zawistowska-Rojek, A., Kosmider, A., Stepien, K., & Tyski, S. (2022). Adhesion and aggregation properties of Lactobacillaceae strains as protection ways against enteropathogenic bacteria. Archives of Microbiology, 204(5), 285. https://doi.org/10.1007/s00203-022-02889-8
Zhao, L., Xie, Q., Etareri Evivie, S., Liu, D., Dong, J., Ping, L., Liu, F., Li, B., & Huo, G. (2021). Bifidobacterium dentium N8 with potential probiotic characteristics prevents LPS-induced intestinal barrier injury by alleviating the inflammatory response and regulating the tight junction in Caco-2 cell monolayers. Food & Function, 12(16), 7171-7184. https://doi.org/10.1039/d1fo01164b
Zhu, L. B., Zhang, Y. C., Huang, H. H., & Lin, J. (2021). Prospects for clinical applications of butyrate-producing bacteria. World Journal of Clinical Pediatrics, 10(5), 84-92. https://doi.org/10.5409/wjcp.v10.i5.84