Fitting of mathematical models in the drying of araticum (Annona crassiflora) seeds
DOI:
https://doi.org/10.5327/fst.26323Palavras-chave:
mathematical modeling, Midilli, Akaike information criterion, bayesian information criterionResumo
Araticum (Annona crassiflora) seeds have relevant characteristics for industrialization due to the contents of phytosterols, carotenoids, phenolic compounds, fatty acids, and organic acids, among other components responsible for biological properties. The objective of this study was to fit different mathematical models to the experimental data, use criteria to choose the best model, evaluate the effective diffusion coefficient, and obtain the activation energy and thermodynamic properties of araticum seeds at different drying temperatures. Seeds of araticum fruits were dried at temperatures of 40, 50, 60, and 70ºC. The drying time of araticum seed decreases with increasing temperature. Among the best models fitted, the Midilli model was recommended to predict the drying curves of araticum seeds under different drying conditions. The linear model represented the effective diffusion coefficient as a function of the drying temperature. Enthalpy and entropy tend to reduce, and Gibbs free energy increases as the drying temperature increases.
Downloads
Referências
Almeida, R. F., Bevilaqua, G. C., & Machado, A. P. O. (2022). Design, construction, and application of a low‐cost solar dryer: A kinetic study of Araticum pulp drying. Journal of Food Processing and Preservation, 46(12), e17200. https://doi.org/10.1111/jfpp.17200
Arruda, H. S., & Pastore, G. M. (2019). Araticum (Annona crassiflora Mart.) as a source of nutrients and bioactive compounds for food and non-food purposes: A comprehensive review. Food Research International, 123, 450-480. https://doi.org/10.1016/j.foodres.2019.05.011
Association of Official Analytical Chemists (AOAC) (2012). Official methods of analysis of the Association of Official Analytical Chemists (19. Ed.). AOAC, 771p.
Baptestini, F. M., Corrêa, P. C., Junqueira, M. S., Ramos, A. M., Vanegas, J. D., & Costa, C. F. (2015). Mathematical modeling of drying of soursop foam. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(12), 1203-1208. https://doi.org/10.1590/1807-1929/agriambi.v19n12p1203-1208
Bastos, A. V. S., Amaral, A. M., Gomes, F. H. F., Xavier, W., & Resende, O. (2019). Drying kinetics of Cecropia pachystachya leaves. Floresta e Ambiente, 26(3), 1-9. https://doi.org/10.1590/2179-8087.042218
Braga Filho, J. R., Naves, R.V., Chaves, L. J., Pires, L. L., & Mazon, L. T. (2014). Physical and physical and chemical characterization of araticum fruits (Annona crassiflora Mart.). Bioscience Journal, 30(1), 16-24.
Corrêa, P. C., Oliveira, G. H. H., Botelho, F. M., Goneli, A. L. D., & Carvalho, F. M. (2010). Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea ambara L.) durante o processo de secagem. Revista Ceres, 57(5), 595-601. https://doi.org/10.1590/S0034-737X2010000500005
Draper, N. R., & Smith, H. (1998). Applied regression analysis (3. Ed.). John Wiley & Sons, 712 p.
Egydio, A. P. M., & Santos, D. Y. A. C. (2011). Underutilized Annona species from the Brazilian Cerrado and Amazon Rainforest: A study on fatty acids profile and yield of seed oils. Economic Botany, 65(3), 329-333.
Fachinello, J. C., & Nachtigal, J. C. (2010). Situação da fruticultura no Brasil. In J. C. Fachinello & J. C. Nachtigal (eds.). Introdução a Fruticultura (cap. 1). Embrapa.
Freitas, B. S. M., Cavalcante, M. D., Cagnin, C., Silva, R. M., Plácido, G. R., & Oliveira, D. E. C. (2018). Physical-chemical characterization of yellow mombin (Spondias mombin L.) foam-mat drying at different temperatures. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(6), 430-435. https://doi.org/10.1590/1807-1929/agriambi.v22n6p430-435
Gomes, F. P., Osvaldo, R., Sousa, E. P., Oliveira, D. E. C., & Araújo Neto, F. R. D. (2018). Drying kinetics of crushed mass of “jambu”: Effective diffusivity and activation energy. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(7), 499-505. https://doi.org/10.1590/1807-1929/agriambi.v22n7p499-505
Goneli, A. L. D., Corrêa, P. C., Oliveira, G. D., & Botelho, F. M. (2010). Water desorption and thermodynamic properties of okra seeds. Transaction of the ASAE, 53(1), 191-197. https://doi.org/10.13031/2013.29486
Gunhan, T., Demir, V., Hancioglu, E., & Hepbasli, A. (2005). Mathematical modelling of drying of bay leaves. Energy Conversion and Management, 46(11-12), 1667-1679. https://doi.org/10.1016/j.enconman.2004.10.001
Jideani, V. A., & Mpotokwana, S. M. (2009). Modeling of water absorption of ambara ambara varieties using Peleg’s equation. Journal of Food Engineering, 92(2), 182-188. https://doi.org/10.1016/j.jfoodeng.2008.10.040
Kashaninejad, M., Mortazavi, A., Safekordi, A., & Tabil, L. G. (2007). Thin-layer drying characteristics and modeling of pistachio nuts. Journal of Food Engineering, 78(1), 98-108. https://doi.org/10.1016/j.jfoodeng.2005.09.007
Luzia, D. M. M., & Jorge, N. (2013). Bioactive substance contents and antioxidant capacity of the lipid fraction of Annona crassiflora Mart. Seeds. Industrial Crops and Products, 42(1), 231-235. https://doi.org/10.1016/j.indcrop.2012.05.027
Madamba, P. S., Driscoli, R. H., & Buckle, K. A. (1996). Thin layer drying characteristics of garlic slices. Journal of Food Engineering, 29(1), 75-97. https://doi.org/10.1016/0260-8774(95)00062-3
Martins, E. A. S., Goneli, A. L. D., Gonçalves, A. A., Siqueira, V. C., Cardoso, C. A. L., & Almeida, G. L. de. (2020). Post-harvesting of Solanum paniculatum L. leaves. Part I: Drying kinetics. Revista Brasileira de Engenharia Agrícola e Ambiental, 24(8), 560-566. https://doi.org/10.1590/1807-1929/agriambi.v24n8p560-566
Mohapatra, D., & Rao, P. S. (2005). A thin layer drying model of parboiled wheat. Journal of Food Engineering, 66(4), 513-518. https://doi.org/10.1016/j.jfoodeng.2004.04.023
Morais, S. J. D. S., Devilla, I. A., Ferreira, D. A., & Teixeira, I. R. (2013). Modelagem matemática das curvas de secagem e coeficiente de difusão de grãos de feijão-caupi (Vigna unguiculata (L.) Walp.). Revista Ciência Agronômica, 44(3), 455-463. https://doi.org/10.1590/S1806-66902013000300006
Moreira, R., Chenlo, F., Torres, M. D., & Vallejo, N. (2008). Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits. Journal of Food Engineering, 88(4), 514-521. https://doi.org/10.1016/j.jfoodeng.2008.03.011
Nkolo Meze’e, Y. N., Noah Ngamveng, J., & Bardet, S. (2008). Effect of enthalpy-entropy compensation during sorption of water vapour in tropical woods: the case of Bubinga (Guibourtia Tessmanii J. L´eonard; G. Pellegriniana J. L.). Thermochimica Acta, 468(1-2), 1-5. https://doi.org/10.1016/j.tca.2007.11.002
Oliveira, G. H. H., Corrêa, P. C., Araújo, E. F., Valente, D. S. M., & Botelho, F. M. (2010). Desorption isotherms and thermodynamic properties of sweet corn cultivars (Zea mays L.). International Journal of Food Science and Technology, 45(3), 546-554. https://doi.org/10.1111/j.1365-2621.2009.02163.x
Pimenta, A. C. (2014). Caracterização morfológica de frutos, sementes e plântulas, estaquia e germinação de sementes de araticunzeiro (Annona crassiflora Mart. Annonaceae). Tese de Doutorado, Universidade Federal do Paraná, Curitiba.
Pimenta, L. P. S., Garcia, G. M., Gonçalves, S. G. V., Dionísio, B. L., Braga, E. M., & Mosqueira, V. C. F. (2014). In vivo antimalarial efficacy of acetogenins, alkaloids and flavonoids enriched fractions from Annona crassiflora Mart. Natural Product Research, 28(16), 1254-1259. https://doi.org/10.1080/14786419.2014.900496
Pinheiro, G. K., Oliveira, D. E. C., Ferreira Junior, W. N., & Resende, O. (2020). Drying kinetics of yellow mombin (Spondias mombin L.) epicarp. Revista Brasileira de Engenharia Agrícola e Ambiental, 24(2), 121-127. https://doi.org/10.1590/1807-1929/agriambi.v24n2p121-127
Quequeto, W. D., Siqueira, V. C., Mabasso, G. A., Isquierdo, E. P., Leite, R. A., Ferraz, L. R., Hoscher, R. H., Schoeninger, V., Jordan, R. A., Goneli, A. L. D., & Martins, E. A. S. (2019). Mathematical modeling of thin-layer drying kinetics of Piper aduncum L. leaves. Journal of Agricultural Science, 11(8), 225-235. https://doi.org/10.5539/jas.v11n8p225
Resende, O., Ferreira, L. U., & Almeida, D. P. (2010). Modelagem matemática para descrição da cinética de secagem do feijão adzuki (Vigna angularis). Revista Brasileira de Produtos Agroindustriais, 12(2), 171-178. https://doi.org/10.15871/1517-8595/rbpa.v12n2p171-178
Resende, O., Oliveira, D. E. C., Costa, L. M., & Ferreira Junior, W. N. (2018). Drying kinetics of baru fruits (Dipteryx alata Vogel). Engenharia Agrícola, 38(1), 103-109. https://doi.org/10.1590/1809-4430-Eng.Agric.v38n1p103-109/2018
Silva, F. P. D., Siqueira, V. C., Quinzani, G. A., Martins, E. A., & Goneli, A. L. D. (2017). Drying kinetics of niger seeds. Engenharia Agrícola, 37(4), 727-738. https://doi.org/10.1590/1809-4430-Eng.Agric.v37n4p727-738/2017
Silva, H. W. D., Vale Junior, L. S., Silva, C. F., Souza, R. D. C., & Soares, R. S. (2018). Drying kinetics and physiological quality of “Cabacinha” pepper seeds during storage. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(4), 292-297. https://doi.org/10.1590/1807-1929/agriambi.v22n4p292-297
Smaniotto, T. A. D. S., Resende, O., Sousa, K. A. D., Oliveira, D. E. C., & Campos, R. C. (2017). Drying kinetics of sunflower grains. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(3), 203-208. https://doi.org/10.1590/1807-1929/agriambi.v21n3p203-208
Souza, D. G., Resende, O., Moura, L. C. D., Ferreira Junior, W. N., & Andrade, J. W. D. S. (2019). Drying kinetics of the sliced pulp of biofortified sweet potato (Ipomoea batatas L.). Engenharia Agrícola, 39(2), 176-181. https://doi.org/10.1590/1809-4430-Eng.Agric.v39n2p176-181/2019
Wolfinger, R. D. (1993). Covariance structure selection in general mixed models. Communications in Statistics, 22(4), 1079-1106. https://doi.org/10.1080/03610919308813143
Zogzas, N. P., Maroulis, Z. B., & Marinos-Kouris, D. (1996). Moisture diffusivity data compilation in foodstuffs. Drying Technology, 14(10), 2225-2253. https://doi.org/10.1080/07373939608917205