In-vitro-digestion of a controlled release material: composite aerated gel containing egg white protein

Autores

DOI:

https://doi.org/10.5327/fst.22723

Palavras-chave:

Composited aerated gel, egg white protein, microstructure, rice bran hydrolysate, in vitro digestion

Resumo

This study aimed to produce a healthy jelly-like product containing protein and bioactive ingredient. Egg white protein (EWP: 0, 3, 6% w/w) and sucrose (0 and 7.5% w/w) were mixed at fixed levels of konjac glucomannan, κ-carrageenan, and sodium bicarbonate in an aerated gel preparation. An interaction between EWP and sucrose significantly yielded lower gas hold-up capacity exhibiting less and small pores confirmed by SEM images. The 3% EWP with 7.5% sucrose gel was selected to further study in vitro digestion by incorporating rice bran hydrolysate (RBH) and determining phenolic compound bioaccessibility. Syneresis and gas hold-up capacity of the gel was improved due to aeration and RBH (P<0.05). Aeration also enhanced the bioaccessibility of phenolic compounds and antioxidants after digestion. Therefore, this study introduces a new food matrix which is an aerated gel containing egg white protein that exhibits high bioaccessibility following pancreatic digestion.

Downloads

Não há dados estatísticos.

Referências

Alavi, F., Emam-Djomeh, Z., Yarmand, M. S., Salami, M., Momen, S., & Moosavi-Movahedi, A. A. (2018). Cold gelation of curcumin loaded whey protein aggregates mixed with κ -carrageenan: Impact of gel microstructure on the gastrointestinal fate of curcumin. Food Hydrocolloids, 85, 267-280. https://doi.org/10.1016/j.foodhyd.2018.07.012

Association of Official Analytical Chemists (AOAC) (2000). Official Methods of Analysis (17th ed.). AOAC.

Banerjee, S., & Bhattacharya, S. (2011). Compressive textural attributes, opacity and syneresis of gels prepared from gellan, agar and their mixtures. Journal of Food Engineering, 102(3), 287-292. https://doi.org/10.1016/j.jfoodeng.2010.08.025

Boonla, O., Kukongviriyapan, U., Pakdeechote, P., Kukongviriyapan, V., Pannangpetch, P., & Thawornchinsombut, S. (2015). Peptides-derived from Thai rice bran improves endothelial function in 2K-1C renovascular hypertensive rats. Nutrients, 7(7), 5783-5799. https://doi.org/10.3390%2Fnu7075252

Campbell, L., Raikos, V., & Euston, S. R. (2003). Modification of functional properties of egg-white proteins. Nahrung - Food, 47(6), 369-376. https://doi.org/10.1002/food.200390084

Cichero, J. A. Y. (2016). Adjustment of food textural properties for elderly patients. Journal of Texture Studies, 47(4), 277-283. https://doi.org/10.1111/jtxs.12200

Fryer, H. J. L., Davis, G. E., Manthorpe, M., & Varon, S. (1986). Lowry protein assay using an automatic microtiter plate spectrophotometer. Analytical Biochemistry, 153(2), 262-266. https://doi.org/10.1016/0003-2697(86)90090-4

Helal, A., Tagliazucchi, D., Verzelloni, E., & Conte, A. (2014). Bioaccessibility of polyphenols and cinnamaldehyde in cinnamon beverages subjected to in vitro gastro-pancreatic digestion. Journal of Functional Foods, 7, 506-516. https://doi.org/10.1016/j.jff.2014.01.005

Huang, M., Mao, Y., Li, H., & Yang, H. (2021). Kappa-carrageenan enhances the gelation and structural changes of egg yolk via electrostatic interactions with yolk protein. Food Chemistry, 360, 129972. https://doi.org/10.1016/j.foodchem.2021.129972

Jin, W., Xiang, L., Peng, D., Liu, G., He, J., Cheng, S., Li, B., & Huang, Q. (2020). Study on the coupling progress of thermo-induced anthocyanins degradation and polysaccharides gelation. Food Hydrocolloids, 105, 105822. https://doi.org/10.1016/j.foodhyd.2020.105822

Kaewjumpol, G., Oruna-Concha, M. J., Niranjan, K., & Thawornchinsombut, S. (2018). The production of hydrolysates from industrially defatted rice bran and its surface image changes during extraction. Journal of the Science of Food and Agriculture, 98(9), 3290-3298. https://doi.org/10.1002/jsfa.8832

Khemakhem, M., Attia, H., & Ayadi, M. A. (2019). The effect of pH, sucrose, salt and hydrocolloid gums on the gelling properties and water holding capacity of egg white gel. Food Hydrocolloids, 87, 11-19. https://doi.org/10.1016/j.foodhyd.2018.07.041

Koshinaka, K., Honda, A., Iizumi, R., Miyazawa, Y., Kawanaka, K., & Sato, A. (2021). Egg white protein feeding facilitates skeletal muscle gain in young rats with/without clenbuterol treatment. Nutrients, 13(6), 2042. https://doi.org/10.3390/nu13062042

Kulmyrzaev, A., Bryant, C., & McClements, D. J. (2000). Influence of Sucrose on the Thermal Denaturation, Gelation, and Emulsion Stabilization of Whey Proteins. Journal of Agricultural and Food Chemistry, 48(5), 1593-1597. https://doi.org/10.1021/jf9911949

Le Bourvellec, C., & Renard, C. M. G. C. (2012). Interactions between polyphenols and macromolecules: Quantification methods and mechanisms. Critical Reviews in Food Science and Nutrition, 52(3), 213-248. https://doi.org/10.1080/10408398.2010.499808

Liu, C. S., Glahn, R. P., & Liu, R. H. (2004). Assessment of carotenoid bioavailability of whole foods using a Caco-2 cell culture model coupled with an in vitro digestion. Journal of Agricultural and Food Chemistry, 52(13), 4330-4337. https://doi.org/10.1021/jf040028k

Liu, Y. F., Oey, I., Bremer, P., Carne, A., & Silcock, P. (2017). Effects of pH, temperature and pulsed electric fields on the turbidity and protein aggregation of ovomucin-depleted egg white. Food Research International, 91, 161-170. https://doi.org/10.1016/j.foodres.2016.12.005

Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: Food sources and bioavailability. American Journal of Clinical Nutrition, 79(5), 727-747. https://doi.org/10.1093/ajcn/79.5.727

Mohammadi Nafchi, A., Tabatabaei, R. H., Pashania, B., Rajabi, H. Z., & Karim, A. A. (2013). Effects of ascorbic acid and sugars on solubility, thermal, and mechanical properties of egg white protein gels. International Journal of Biological Macromolecules, 62, 397-404. https://doi.org/10.1016/j.ijbiomac.2013.09.050

Orrego, M., Troncoso, E., & Zúñiga, R. N. (2015). Aerated whey protein gels as new food matrices: Effect of thermal treatment over microstructure and textural properties. Journal of Food Engineering, 163, 37-44. https://doi.org/10.1016/j.jfoodeng.2015.04.027

Ozdal, T., Capanoglu, E., Altay, F. (2013). A review on protein–phenolic interactions and associated changes. Food Research International, 51(2), 954-970. https://doi.org/10.1016/j.foodres.2013.02.009

Parada, J., & Aguilera, J. M. (2007). Food microstructure affects the bioavailability of several nutrients. Journal of Food Science, 72(2), 21-32. https://doi.org/10.1111/j.1750-3841.2007.00274.x

Raikos, V., Campbell, L., & Euston, S. R. (2007). Effects of sucrose and sodium chloride on foaming properties of egg white proteins. Food Research International, 40(3), 347-355. https://doi.org/10.1016/j.foodres.2006.10.008

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Catherine, R.-E. (1999). Antioxidant Activity Applying An Improved ABTS Radical Cation Decolorization Assay. EMPA Activities, 26(2007), 51.

Santana Andrade, J. K., Chagas Barros, R. G., Pereira, U. C., Nogueira, J. P., Gualberto, N. C., Santos de Oliveira, C., Shanmugam, S., & Narain, N. (2022). Bioaccessibility of bioactive compounds after in vitro gastrointestinal digestion and probiotics fermentation of Brazilian fruits residues with antioxidant and antidiabetic potential. LWT, 153, 112469. https://doi.org/10.1016/j.lwt.2021.112469

Senaphan, K., Kukongviriyapan, U., Suwannachot, P., Thiratanaboon, G., Sangartit, W., Thawornchinsombut, S., & Jongjareonrak, A. (2021). Protective effects of rice bran hydrolysates on heart rate variability, cardiac oxidative stress, and cardiac remodeling in high fat and high fructose diet-fed rats. Asian Pacific Journal of Tropical Biomedicine, 11(5), 183-193. https://doi.org/10.4103/2221-1691.311754

Seraglio, S. K. T., Gonzaga, L. V., Schulz, M., Vitali, L., Micke, G. A., Costa, A. C. O., Fett, R., & Borges, G. D. S. C. (2018). Effects of gastrointestinal digestion models in vitro on phenolic compounds and antioxidant activity of juçara (Euterpe edulis). International Journal of Food Science and Technology, 53(8), 1824-1831. https://doi.org/10.1111/ijfs.13816

Su, Y., Dong, Y., Niu, F., Wang, C., Liu, Y., & Yang, Y. (2015). Study on the gel properties and secondary structure of soybean protein isolate/egg white composite gels. European Food Research and Technology, 240(2), 367-378. https://doi.org/10.1007/s00217-014-2336-3

Suebsaen, K., Suksatit, B., Kanha, N., & Laokuldilok, T. (2019). Instrumental characterization of banana dessert gels for the elderly with dysphagia. Food Bioscience, 32, 100477. https://doi.org/10.1016/j.fbio.2019.100477

Tang, H., Tan, L., Chen, Y., Zhang, J., Li, H., & Chen, L. (2021). Effect of κ‐carrageenan addition on protein structure and gel properties of salted duck egg white. Journal of the Science of Food and Agriculture, 101(4), 1389-1395. https://doi.org/10.1002/jsfa.10751

Tang, S., Hettiarachchy, N. S., Horax, R., & Eswaranandam, S. (2003). Physicochemical properties and functionality of rice bran protein hydrolyzate prepared from heat-stabilized defatted rice bran with the aid of enzymes. Journal of Food Science, 68(1), 152-157. https://doi.org/10.1111/j.1365-2621.2003.tb14132.x

Tomczyńska-Mleko, M., Gustaw, W., Piersiak, T., Terpiłowski, K., Sołowiej, B., Wesołowska-Trojanowska, M., & Mleko, S. (2014). Whey protein aerated gels as a new product obtained using ambient temperature magnesium and iron(II) induced gelation. Acta Alimentaria, 43(3), 465-472. https://doi.org/10.1556/AAlim.43.2014.3.14

Tomczyńska-Mleko, M., Handa, A., Wesołowska-Trojanowska, M., Terpiłowski, K., Kwiatkowski, C., & Mleko, S. (2016). New controlled release material: Aerated egg white gels induced by calcium ions. European Food Research and Technology, 242(8), 1235-1243. https://doi.org/10.1007/s00217-015-2627-3

Tomczyńska-Mleko, M., Mleko, S., Terpiłowski, K., Pérez-Huertas, S., & Nishinari, K. (2022). Aerated whey protein gels as a controlled release system of creatine investigated in an artificial stomach. Innovative Food Science & Emerging Technologies, 79, 103060. https://doi.org/10.1016/j.ifset.2022.103060

United Nations. Department of Economic and Social Affairs, Population Division (2019). World Population Prospects. United Nations.

Wu, D., Yu, S., Liang, H., He, C., Li, J., & Li, B. (2020). The influence of deacetylation degree of konjac glucomannan on rheological and gel properties of konjac glucomannan/κ-carrageenan mixed system. Food Hydrocolloids, 101, 105523. https://doi.org/10.1016/j.foodhyd.2019.105523

Yamul, D. K., Galmarini, M. V., Lupano, C. E., & Zamora, M. C. (2013). Whey protein concentrate gels with different sucrose content: Instrumental texture measurements and sensory perception. International Dairy Journal, 28(1), 24-31. https://doi.org/10.1016/j.idairyj.2012.08.002

Zhang, Q., Xing, B., Sun, M., Zhou, B., Ren, G., & Qin, P. (2020). Changes in bio-accessibility, polyphenol profile and antioxidants of quinoa and djulis sprouts during in vitro simulated gastrointestinal digestion. Food Science and Nutrition, 8(8), 4232-4241. https://doi.org/10.1002/fsn3.1718

Zúñiga, R. N., & Aguilera, J. M. (2008). Aerated food gels: Fabrication and potential applications. Trends in Food Science and Technology, 19(4), 176-187. https://doi.org/10.1016/j.tifs.2007.11.012

Zúñiga, R. N., Kulozik, U., & Aguilera, J. M. (2011). Ultrasonic generation of aerated gelatin gels stabilized by whey protein β-lactoglobulin. Food Hydrocolloids, 25(5), 958-967. https://doi.org/10.1016/j.foodhyd.2010.09.010

Downloads

Publicado

2023-09-14

Como Citar

SRUN, M., HIRUNSORN, P., WACHIRATTANAPONGMETEE, K., PITIRIT, T., & THAWORNCHINSOMBUT, S. (2023). In-vitro-digestion of a controlled release material: composite aerated gel containing egg white protein . Food Science and Technology, 43. https://doi.org/10.5327/fst.22723

Edição

Seção

Artigos Originais