Metataxonomic analysis of bacterial and fungal communities in colonial cheese
DOI:
https://doi.org/10.5327/fst.00153%20Palavras-chave:
metataxonomic, metagenomic, probiotic, genetic sequencing, bacteria, 16S rRNA, ITS region, mold, yeastResumo
Colonial cheese is one of the typical products of the southern region of Brazil, and it is known that this type of food is home to a complex microbial community. Therefore, this study aimed to evaluate the microbiota present in Colonial cheese, through the use of a high-performance system MiSeq Sequencing System, from the regions V3/V4 of the 16S rRNA using the 341F and 806R primers for bacteria and ITS1/ITS2 primers for the ITS1 region of molds and yeasts. Sequence analyses were performed using the Sentinel pipeline. The results for bacterial microbiome showed that there were 4 phyllo, 30 genera, and 57 species in the sample, among them Lactococcus lactis (30.63%), Corynebacterium variable (17.91%), Enterococcus sp. (17.4%), and Bifidobacterium psychraerophilum (7.24%), all naturally found in milk. In addition, 19 yeast species were identified, including Diutina catelunata, Clavispora lusitaniae, Kodamaea ohmeri, Kluyveromyces marxianus, and Candida ethanolica those that obtained the highest number of sequences reads. The results obtained on the microbiome are in line with other studies on cheeses across the globe, considering that the microorganisms are naturally found in both the raw material and the production environment.
Downloads
Referências
Alegría, A., Álvarez-Martín, P., Sacristán, N., Fernández, E., Delgado, S., & Mayo, B. (2009). Diversity and evolution of the microbial populations during manufacture and ripening of Casín, a traditional Spanish, starter-free cheese made from cow's milk. International Journal of Food Microbiology, 136(1), 44-51. https://doi.org/10.1016/j.ijfoodmicro.2009.09.023
Almeida, A. C. (2011). Caracterização de leveduras isoladas de queijo coalho (Master's thesis). Universidade Federal de Pernambuco.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. Retrieved from http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Banjara, N., Suhr, M. J., & Hallen-Adams, H. E. (2015). Diversity of yeast and mold species from a variety of cheese types. Current Microbiology, 70(6), 792-800. https://doi.org/10.1007/s00284-015-0790-1
Barrea, L., Muscogiuri, G., Frias-Toral, E., Laudisio, D., Pugliese, G., Castellucci, B., Garcia-Velasquez, E., Savastano, S., & Colao, A. (2020). Nutrition and immune system: from the Mediterranean diet to dietary supplementation through the microbiota. Critical Reviews in Food Science and Nutrition, 61(18), 3066-3090. https://doi.org/10.1080/10408398.2020.1792826
Barros, C. P., Verruck, S., Prudêncio, E. S., Zacarchenco, P. B., & Cruz, A. G. (2020). Probióticos, Prebióticos, Paraprobióticos e Pos-Bióticos de Nova Geração. In P. B. Zacarchenco (Ed.), Probióticos e prebióticos (pp. 24-51). Setembro.
Belloch, C., Querol, A., & Barrio, E. (2011). Yeasts and Molds | Kluyveromyces spp. Encyclopedia of Dairy Sciences, 754-764. https://doi.org/10.1016/B978-0-12-374407-4.00499-4
Beresford, T. P., Fitzsimons, N. A., Brennan, N. L., & Cogan, T. M. (2001). Recent advances in cheese microbiology. International Dairy Journal, 11(4-7), 259-274. https://doi.org/10.1016/s0958-6946(01)00056-5
Borelli, B. M., Ferreira, E. G., Lacerda, I. C. A., Franco, G. R., & Rosa, C. A. (2006). Yeast populations associated with the artisanal cheese produced in the region of Serra da Canastra, Brazil. World Journal of Microbiology and Biotechnology, 22(11), 1115-1119. https://doi.org/10.1007/s11274-006-9151-3
Bottari, B., Levante, A., Neviani, E., & Gatti, M. (2018). How the fewest become the greatest. L. casei's impact on long-ripened cheeses. Frontiers in Microbiology, 9, 2866. https://doi.org/10.3389/fmicb.2018.02866
Braem, G., De Vliegher, S., Verbist, B., Heyndrickx, M., Leroy, F., De Vuyst, L. (2012). Culture-independent exploration of the teat apex microbiota of dairy cows reveals wide bacterial species diversity. Veterinary Microbiology, 157(3-4), 383-390. https://doi.org/10.1016/j.vetmic.2011.12.031
Buchl, N. R., & Seiler, H. (2011). Yeasts and Molds: Yeasts in milk and dairy products. In J. W. Fuquay, P. F. Fox, & P. L.H. McSweeney (Eds.), Encyclopedia of Dairy Sciences (2nd ed., pp. 1-4068). Academic Press.
Buehler, A. J., Soresen, M. T., Vestergaard, M., Weisbjerg, M. R., Basar, A., Larsen, M. K., Martinussen, H., Kidmose, U., & Sehested, J. (2017). Internal transcribed spacer (ITS) sequencing reveals considerable fungal diversity in dairy products. Journal of Dairy Science, 100(11), 8814-8825. https://doi.org/10.3168/jds.2017-12718
Cambronel, M., Nilly, F., Mesguida, O., Boukerb, A. M., Racine, P.-J., Baccouri, O., Borrel, V., Martel, J., Fécamp, F., Knowlton, R., Zimmermann, K., Domann, E., Rodrigues, S., Feuilloley, M., & Connil, N. (2020). Influence of catecholamines (epinephrine/norepinephrine) on biofilm formation and adhesion in pathogenic and probiotic strains of Enterococcus faecalis. Frontiers in Microbiology, 11, 1501. https://doi.org/10.3389/fmicb.2020.01501
Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S. M., Betley, J., Fraser, L., Bauer, M., Gormley, N., Gilbert, J. A., Smith, G., & Knight, R. (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal, 6(8), 1621-1624. https://doi.org/10.1038/ismej.2012.8
Cardoso, V. M., Borelli, B. M., Lara, C. A., Soares, M. A., Pataro, C., Bodevan, E. C., & Rosa, C. A. (2015). The influence of seasons and ripening time on yeast communities of a traditional Brazilian cheese. Food Research International, 69, 331-340. https://doi.org/10.1016/j.foodres.2014.12.040
Carvalho, G. R., & Rocha, D. T. (2019). O leite em 2018 e perspectivas para 2019. In EMBRAPA (Ed.), Anuário gado leite 2019 (pp. 10-12). EMBRAPA.
Castro, R. D., Oliveira, L. G., Sant’Anna, F. M., Luiz, L. M. P., Sandes, S. H. C., Silva, C. I. F., Silva, A. M., Nunes, A. C., Penna, C. F. A. M., & Souza, M. R. (2016). Lactic acid microbiota identification in water, raw milk, endogenous starter culture, and fresh Minas artisanal cheese from the Campo das Vertentes region of Brazil during the dry and rainy seasons. Journal of Dairy Science, 99(8), 6086-6096. https://doi.org/10.3168/jds.2015-10579
Cavanagh, D., Fitzgerald, G. F., & McAuliffe, O. (2015). From field to fermentation: The origins of Lactococcus lactis and its domestication to the dairy environment. Food Microbiology, 47, 45-61. https://doi.org/10.1016/j.fm.2014.11.001
Centeno, J. A., Tomillo, F. J., Fernández-García, E., Gaya, P., & Nuñez, M. (2002). Effect of wild strains of Lactococcus lactis on the volatile profile and the sensory characteristics of ewes’ raw milk cheese. Journal of Dairy Science, 85(12), 3164-3172. https://doi.org/10.3168/jds.S0022-0302(02)74404-4
Chaplin, D. D. (2010). Overview of the immune response. Journal of Allergy and Clinical Immunology, 125(2), S3-S23. https://doi.org/10.1016/j.jaci.2009.12.980
Chombo-Morales, P., Kirchmayr, M., Gschaedler, A., Lugo-Cervantes, E., & Villanueva-Rodríguez, S. (2016). Effects of controlling ripening conditions on the dynamics of the native microbial population of Mexican artisanal Cotija cheese assessed by PCR-DGGE. LWT - Food Science and Technology, 65, 1153-1161. https://doi.org/10.1016/j.lwt.2015.09.044
Cock, P. J. A., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B., & de Hoon, M. J. (2009). Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics, 25(11), 1422-1423. https://doi.org/10.1093/bioinformatics/btp163
Cocolin, L., & Ercolini, D. (2015). Zooming into food-associated microbial consortia: a cultural evolution. Current Opinion in Food Science, 2, 43-50. https://doi.org/10.1016/j.cofs.2015.01.003
Cocolin, L., & Rantsiou, K. (2007). Sequencing and expression analysis of sakacin genes in Lactobacillus curvatus strains. Applied Microbiology and Biotechnology, 76(6), 1403-1411. https://doi.org/10.1007/s00253-007-1120-8
De Angelis, M., Bottacini, F., Fosso, B., Kelleher, P., Calasso, M., Di Cagno, R., Ventura, M., Picardi, E., van Sinderen, D., & Gobbetti, M. (2014). Lactobacillus rossiae, a vitamin B12 producer, represents a metabolically versatile species within the genus Lactobacillus. PLoS One, 9(9), e107232. https://doi.org/10.1371/journal.pone.0107232
De Cesare, A. (2019). Metagenomics to investigate the dynamics of microbial communities in poultry and poultry products. Lohmann Information, 53(2).
Deetae, P., Bonnarme, P., Spinnler, H. E., & Helinck, S. (2007). Production of volatile aroma compounds by bacterial strains isolated from different surface-ripened French cheeses. Applied Microbiology and Biotechnology, 76(5), 1161-1171. https://doi.org/10.1007/s00253-007-1095-5
Delbès, C., Ali-Mandjee, L., & Montel, M.-C. (2007). Monitoring bacterial communities in raw milk and cheese by culture-dependent and -independent 16S rRNA gene-based analyses. Applied and Environmental Microbiology, 73(6), 1882-1891. https://doi.org/10.1128/aem.01716-06
Derrien, M., & Vlieg, J. E. T. V. H. (2015). Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends in Microbiology, 23(6), 354-366. https://doi.org/10.1016/j.tim.2015.03.002
DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P., & Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environment Microbiology, 72(7), 5069-5072. https://doi.org/10.1128/AEM.03006-05
Di Cagno, R., De Angelis, M., Gallo, G., Settanni, L., Berloco, M. G., Siragusa, S., Parente, E., Corsetti, A., & Gobbetti, M. (2007). Genotypic and phenotypic diversity of Lactobacillus rossiae strains isolated from sourdough. Journal of Applied Microbiology, 103(4), 821-835. https://doi.org/10.1111/j.1365-2672.2007.03389.x
Dorigon, C. (2020). História, cultura e valorização territorial no Sul do Brasil. Retrieved from https://slowfoodbrasil.org/arca_do_gosto/queijo-colonial/
Duranti, S., Longhi, G., Ventura, M., van Sinderen, D., & Turroni, F. (2020). Exploring the ecology of bifidobacteria and their genetic adaptation to the mammalian gut. Microorganisms, 9(1), 8. https://doi.org/10.3390/microorganisms9010008
Empresa Brasileira de Pesquisa Agropecuária (EPAGRI) (2023). Centro de Socioeconomia e Planejamento Agrícola. Observatório Agro Catarinense. EPAGRI. Retrieved from https://www.observatorioagro.sc.gov.br/areas-tematicas/producao-agropecuaria/paineis/
Fajarningsih, N. D. (2016). Internal Transcribed Spacer (ITS) as DNA Barcoding to Identify Fungal Species: a Review. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 11(2), 37. https://doi.org/10.15578/squalen.v11i2.213
Fleet, G. (1990). Yeasts in dairy products—a review. Journal of Applied Bacteriology, 68(3), 199-211. https://doi.org/10.1111/j.1365-2672.1990.tb02566.x
Franciosa, I., Alessandria, V., Dolci, P., Rantsiou, K., & Cocolin, L. (2018). Sausage fermentation and starter cultures in the era of molecular biology methods. International Journal of Food Microbiology, 279, 26-32. https://doi.org/10.1016/j.ijfoodmicro.2018.04.038
Franz, C. M. A. P., Huch, M., Abriouel, H., Holzapfel, W., & Gálvez, A. (2011). Enterococci as probiotics and their implications in food safety. International Journal of Food Microbiology, 151(2), 125-140. https://doi.org/10.1016/j.ijfoodmicro.2011.08.014
Fricker, M., Skånseng, B., Rudi, K., Stessl, B., & Ehling-Schulz, M. (2011). Shift from farm to dairy tank milk microbiota revealed by a polyphasic approach is independent of geographical origin. International Journal of Food Microbiology, 145(Suppl. 1), S24-S30. https://doi.org/10.1016/j.ijfoodmicro.2010.08.025
Gill, J. J., Sabour, P. M., Gong, J., H., Leslie, K. E., & Griffiths, M. W. (2006). Characterization of bacterial populations recovered from the teat canals of lactating dairy and beef cattle by 16S rRNA gene sequence analysis. FEMS Microbiology Ecology, 56(3), 471-481. https://doi.org/10.1111/j.1574-6941.2006.00091.x
Gkatzionis, K., Yunita, D., Linforth, R. S., Dickinson, M., & Dodd, C. E. (2014). Diversity and activities of yeasts from different parts of a Stilton cheese. International Journal of Food Microbiology, 177, 109-116. https://doi.org/10.1016/j.ijfoodmicro.2014.02.016
Groenewald, M., Boekhout, T., Neuvéglise, C., Gaillardin, C., van Dijck, P. W., & Wyss, M. (2013). Yarrowia lipolytica: safety assessment of an oleaginous yeast with great industrial potential. Critical Reviews in Microbiology, 40(3), 187-206. https://doi.org/10.3109/1040841x.2013.770386
Hahne, J., Kloster, T., Rathmann, S., Weber, M., & Lipski, A. (2018). Isolation and characterization of Corynebacterium spp. from bulk tank raw cow's milk of different dairy farms in Germany. PLoS One, 13(4), e0194365. https://doi.org/10.1371/journal.pone.0194365
Ilse, S., Roel, Van der M., Gino, V., Luc, De V., Luca, S., Peter, V., & Geert, H. (2009). Polyphasic taxonomic characterization of Lactobacillus rossiae isolates from Belgian and Italian sourdoughs reveals intraspecific heterogeneity. Systematic and Applied Microbiology, 32(2), 151-156. https://doi.org/10.1016/j.syapm.2008.12.006
Jakobsen, M., & Narvhus, J. (1996). Yeasts and their possible beneficial and negative effects on the quality of dairy products. International Dairy Journal, 6(8-9), 755-768. https://doi.org/10.1016/0958-6946(95)00071-2
Jonnala, B. R. Y., McSweeney, P. L. H., Sheehan, J. J., & Cotter, P. D. (2018). Sequencing of the Cheese Microbiome and Its Relevance to Industry. Frontiers in Microbiology, 9, 1020. https://doi.org/10.3389%2Ffmicb.2018.01020
Kazou, M., Pagiati, L., Bounenni, R., & Tsakalidou, E. (2021). Microbial Flora. In: F. Toldrá & L. M. L. Nollet (Eds.), Handbook of Dairy Foods Analysis (2nd ed., pp. 673-697). Taylor & Francis.
Khelissa, S., Chihib, N.-E., & Gharsallaoui, A. (2020). Conditions of nisin production by Lactococcus lactis subsp. lactis and its main uses as a food preservative. Archives of Microbiology, 203(2), 465-480. https://doi.org/10.1007/s00203-020-02054-z
Kok, C. R., & Hutkins, R. (2018). Yogurt and other fermented foods as sources of health-promoting bacteria. Nutrition Reviews, 76(1), 4-15. https://doi.org/10.1093/nutrit/nuy056
Lima, C. D. L. C., Lima, L. A., Cerqueira, M. M. O. P., Ferreira, E. G., & Rosa, C. A. (2009). Bactérias do ácido lático e leveduras associadas com o queijo de minas artesanal produzido na região da Serra do Saltire, Minas Gerais. Arquivos Brasileiros de Medicina Veterinária e Zootecnia, 61(1), 266-272. https://doi.org/10.1590/S0102-09352009000100037
Lugli, G. A., Milani, C., Duranti, S., Alessandri, G., Turroni, F., Mancabelli, L., Tatoni, D., Ossiprandi, M. C., van Sinderen, D., & Ventura, M. (2019). Isolation of novel gut bifidobacteria using a combination of metagenomic and cultivation approaches. Genome Biology, 20, 96. https://doi.org/10.1186/s13059-019-1711-6
Miranda, N. M. Z. (2020). Caracterização probiótica de leveduras isoladas de Queijo Minas Artesanal (Master's thesis). Universidade Federal dos Vales do Jequitinhonha e Mucuri.
Moraes, P. M., Perin, L. M., Todorov, S. D., Silva, A., Franco, B. D. G. M., & Nero, L. A. (2012). Bacteriocinogenic and virulence potential of Enterococcus isolates obtained from raw milk and cheese. Journal of Applied Microbiology, 113(2), 318-328. https://doi.org/10.1111/j.1365-2672.2012.05341.x
Nahidul-Islam, S. M., Kuda, T., Takahashi, H., & Kimura, B. (2018). Bacterial and fungal microbiota in traditional Bangladeshi fermented milk products analyzed by culture-dependent and culture-independent methods. Food Research International, 111, 431-437. https://doi.org/10.1016/j.foodres.2018.05.048
National Research Council (2007). The New Science of Metagenomics: Revealing the Secrets of Our Microbial Planet. The National Academies Press.
Nishita, M., Park, S. Y., Nishio, T., Kamizaki, K., Wang, Z., Tamada, K., Takumi, T., Hashimoto, R., Otani, H., Pazour, G. J., Hsu, V. W., & Minami, Y. (2017). Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness. Scientific Reports, 7, 1. https://doi.org/10.1038/s41598-016-0028-x
O’Brien, C. E., McCarthy, C. G. P., Walshe, A. E., Shaw, D. R., Sumski, D. A., Krassowski, T., Fitzpatrick, D. A., & Butler, G. (2018). Genome analysis of the yeast Diutina catenulata, a member of the Debaryomycetaceae/Metschnikowiaceae (CTG-Ser) clade. PLoS One, 13(6), e0198957. https://doi.org/10.1371%2Fjournal.pone.0198957
Okamoto, M., Benno, Y., Leung, K.-P., & Maeda, N. (2008). Bifidobacterium tsurumiense sp. nov., from hamster dental plaque. International Journal of Systematic and Evolutionary Microbiology, 58(1), 144-148. https://doi.org/10.1099/ijs.0.65296-0
Pereira, M. N. (2018). Queijo artesanal serrano: micobiota natural e qualidade em relação à aflatoxina M1 e sujidades (Master's thesis). Universidade Federal de Santa Catarina.
Picon, A., García-Casado, M. A., & Núñez, M. (2010). Proteolytic activities, peptide utilization and oligopeptide transport systems of wild Lactococcus lactis strains. International Dairy Journal, 20(3), 156-162. https://doi.org/10.1016/j.idairyj.2009.10.002
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590-D596. https://doi.org/10.1093/nar/gks1219
Quigley, L., O'Sullivan, O., Stanton, C., Beresford, T. P., Ross, R. P., Fitzgerald, G. F., & Cotter, P. D. (2013). The complex microbiota of raw milk. FEMS Microbiology Reviews, 37(5), 664-698. https://doi.org/10.1111/1574-6976.12030
Rantsiou, K., Urso, R., Lacumin, L., Cantoni, C., Cattaneo, P., Comi, G., & Cocolin, L. (2005). Culture-dependent and -independent methods to investigate the microbial ecology of Italian fermented sausages. Applied and Environmental Microbiology, 71(4), 1977-1986.
Renye, J. A., Somkuti, G. A., Van Hekken, D. L., & Guerrero Prieto, V. M. (2011). Short communication: Characterization of microflora in Mexican Chihuahua cheese. Journal of Dairy Science, 94(7), 3311-3315. https://doi.org/10.3168/jds.2011-4177
Rückert, C., Albersmeier, A., Al-Dilaimi, A., Bednarz, H., Niehaus, K., Szczepanowski, R., & Kalinowski, J. (2014). Genome sequence of the squalene-degrading bacterium Corynebacterium terpenotabidum type strain Y-11(T) (= DSM 44721(T)). Stand Genomic Science, 9(3), 505-513. https://doi.org/10.4056/sigs.4588337
Santa Catarina (2018). Portaria SAR Nº 32, de 7 de novembro de 2018. Norma Interna Regulamentadora do Queijo Colonial (Maturado).
Schmidt, P. A., Bálint, M., Greshake, B., Bandow, C., Römbke, J., & Schmitt, I. (2013). Illumina metabarcoding of a soil fungal community. Soil Biology and Biochemistry, 65, 128-132. https://doi.org/10.1016/j.soilbio.2013.05.014
Schröder, J., Maus, I., Trost, E., & Tauch, A. (2011). Complete genome sequence of Corynebacterium variabile DSM 44702 isolated from the surface of smear-ripened cheeses and insights into cheese ripening and flavor generation. BMC Genomics, 12(1), 545. https://doi.org/10.1186/1471-2164-12-545
Sharma, A., Lee, S., & Park, Y.-S. (2020). Molecular typing tools for identifying and characterizing lactic acid bacteria: a review. Food Science and Biotechnology, 29(10), 1301-1318. https://doi.org/10.1007/s10068-020-00802-x
Sharma, P., Kumar Tomar, S., Goswami, P., Sangwan, V., & Singh, R. (2014). Antibiotic resistance among commercially available probiotics. Food Research International, 57, 176-195. https://doi.org/10.1016/j.foodres.2014.01.025
Silvetti, T., Morandi, S., & Brasca, M. (2014). Biopreservation potential of Enterococcus faecalis isolated from Italian traditional raw milk cheeses. Cyta - Journal of Food, 12(3), 210-217. https://doi.org/10.1080/19476337.2013.825327
Simpson, P. J., Stanton, C., Fitzgerald, G. F., & Ross, R. P. (2003). Genomic diversity and relatedness of Bifidobacteria isolated from a porcine cecum. Journal of Bacteriology, 185(8), 2571-2581. https://doi.org/10.1128%2FJB.185.8.2571-2581.2003
Siqueira, K. B. (2019). O Mercado Consumidor de Leite e Derivados. Circular técnica n. 120. Embrapa.
Smit, G., Smit, B. A., & Engels, W. J. M. (2005). Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiology Reviews, 29(3), 591-610. https://doi.org/10.1016/j.fmrre.2005.04.002
Smyth, R. P., Schlub, T. E., Grimm, A., Venturi, V., Chopra, A., Mallal, S., Davenport, M. P., & Mak, J. (2010). Reducing chimera formation during PCR amplification to ensure accurate genotyping. Gene, 469(1-2), 45-51. https://doi.org/10.1016/j.gene.2010.08.009
Vanetti, M. C. D., & Machado, S. G. (2021). Spoilage Detection. In: Fidel Toldrá & Leo M. L. Nollet (Eds.), Handbook of Dairy Foods Analysis (2nd ed., pp. 699-711). CRC Press.
Venter, C., Eyerich, S., Sarin, T., & Klatt, K. C. (2020). Nutrition and the Immune System: a complicated tango. Nutrients, 12(3), 818. https://doi.org/10.3390/nu12030818
Waheed, S., Rasool, M. H., Aslam, B., Muzammil, S., Waseem, M., Shahid, M., Saqib, M., Hayat, S., Naeem, M., Taj, Z., Kabir, S., Saqalein, M., Nisar, M. A., & Khurshid, M. (2021). Antagonistic Potential of Dairy Origin Enterococcus faecium Against Multidrug-Resistant Foodborne Pathogens. Romanian Biotechnological Letters, 26(2), 2406-2415. https://doi.org/10.25083/rbl/26.2/2406.2415
Wang, Y., & Qian, P.-Y. (2009). Conservative Fragments in Bacterial 16S rRNA Genes and Primer Design for 16S Ribosomal DNA Amplicons in Metagenomic Studies. PLoS One, 4(10), e7401. https://doi.org/10.1371/journal.pone.0007401
Welthagen, J. J., & Viljoen, B. C. (1999). The isolation and identification of yeasts obtained during the manufacture and ripening of Cheddar cheese. Food Microbiology, 16(1), 63-73. https://doi.org/10.1006/fmic.1998.0219
White, T. J., Bruns, T. D., Lee, S. B., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols (pp. 315-322). Academic Press.
Wong, C. B., Odamaki, T., & Xiao, J. Z. (2020). Insights into the reason of Human-Residential Bifidobacteria (HRB) being the natural inhabitants of the human gut and their potential health-promoting benefits. FEMS Microbiology Reviews, 44(3), 369-385. https://doi.org/10.1093/femsre/fuaa010
Wu, Q., & Shah, N. P. (2017). High γ-aminobutyric acid production from lactic acid bacteria: emphasis on Lactobacillus brevis as a functional dairy starter. Critical Reviews in Food Science and Nutrition, 57(17), 3661-3672. https://doi.org/10.1080/10408398.2016.1147418
Yasmin, I., Saeed, M., Khan, W. A., Khaliq, A., Chughtai, M. F. J., Iqbal, R., Tehseen, S., Naz, S., Liaqat, A., Mehmood, T., Ahsan, S., & Tanweer, S. (2020). In Vitro Probiotic Potential and Safety Evaluation (Hemolytic, Cytotoxic Activity) of Bifidobacterium Strains Isolated from Raw Camel Milk. Microorganisms, 8(3), 354. https://doi.org/10.3390/microorganisms8030354
Yvon, M., & Rijnen, L. (2001). Cheese flavour formation by amino acid catabolism. International Dairy Journal, 11(4-7), 185-201. https://doi.org/10.1016/S0958-6946(01)00049-8
Zhang, J., Ding, X., Guan, R., Zhu, C., Xu, C., Zhu, B., Zhang, H., Xiong, Z., Xue, Y., Tu, J., & Lu, Z. (2018). Evaluation of different 16S rRNA gene V regions for exploring bacterial diversity in a eutrophic freshwater lake. Science of the Total Environment, 618, 1254-1267. https://doi.org/10.1016/j.scitotenv.2017.09.228
Zhong, Z., Hou, Q., Kwok, L., Yu, Z., Zheng, Y., Sun, Z., Menghe, B., & Zhang, H. (2016). Bacterial microbiota compositions of naturally fermented milk are shaped by both geographic origin and sample type. Journal of Dairy Science, 99(10), 7832-7841. https://doi.org/10.3168/jds.2015-10825