Functional properties of Ganoderma lucidum extract: antimicrobial and antioxidant activities
DOI:
https://doi.org/10.5327/fst.21423Palavras-chave:
Ganoderma lucidum, natural antimicrobial, antioxidant activity, total phenolic compoundsResumo
This research was conducted to investigate the functional properties of Ganoderma lucidum extract. The antimicrobial activity was evaluated on some bacteria causing food spoilage like Staphylococcus aureus and Escherichia coli. Antioxidant activity was investigated by examining the effect of the extract on DPPH and ABTS free radicals, determining the amount of total phenolic compounds and flavonoids. Based on the results, the antimicrobial and antioxidant activities of the extract were increased by increasing the concentration. Staphylococcus aureus showed the highest sensitivity to Ganoderma extract with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 50 and 100 μg/mL, respectively. The total phenols amount was equal to 383.727 milligrams of gallic acid equivalent per gram (mg GAE/g) of the extract and the total flavonoid was equal to 28.047 milligrams of quercetin equivalents per gram (mg QE/g) of extract. The results of antioxidant activity tests showed that the concentration of 400 μg/mL had the highest scavenging activity of 85.9 and 90.12% for DPPH and ABTS free radicals, respectively. Therefore, considering the potential antioxidant activity and the rich amounts of phenolic compounds in Ganoderma extract, it can be used in the pharmaceutical and food industries instead of synthetic antioxidants and other chemical preservatives to delay lipid peroxidation and prevent the growth of food pathogens.
Downloads
Referências
Badalyan, S., Gharibyan, N., & Kocharyan, A. (2007). Perspective in usage of bioactive substances of medicinal mushrooms in pharmaceutical and cosmetic industry. International Journal of Medicinal Mushrooms, 9(3-4), 275-276.
Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178-182. https://doi.org/10.38212/2224-6614.2748
Esazadeh Razelighi, S., Khamiri, M., Sadeghi, A.R., Kashaninezhad, M., & Mirzaei, H. (2016). Evaluation of Growth Inhibition of Food Spoilage Yeasts by Lemon Balm Essential Oil (Melissa officinalis) and Extract of Pennyroyal (Mentha pulegium). Journal of Food Technology and Nutrition, 14(1), 47-54.
Fakoor, M., Allameh, A., Rasooli, I., & Mazaheri, M. (2007). Antifungal effects of Zataria multiflora Boiss. and Thymus eriocalyx (Ronniger) Jalas essential oils on aflatoxin producing Aspergillus parasiticus. Iranian Journal of Medicinal and Aromatic Plants Research, 23(2), 269-277.
Hong, S. G. & Jung, H. S. (2004). Phylogenetic analysis of Ganoderma based on nearly complete mitochondrial small-subunit ribosomal DNA sequences. Mycologia, 96(4), 742-755. https://doi.org/10.1080/15572536.2005.11832922
Jonathan, S., & Awotona, F. (2010). Studies on antimicrobial potentials of three Ganoderma species. African Journal of Biomedical Research, 13(2), 131-139.
Jouki, M., & Khazaei, N. (2010). Compare of extraction of phenolic compounds from Pistacia atlantica in different solvents. Advances in Biomedical Research. Proceedings. pp. 361-365.
Jouki, M., Khazaei, N., Rashidi-Alavijeh, S., & Ahmadi, S. (2021). Encapsulation of Lactobacillus casei in quince seed gum-alginate beads to produce a functional synbiotic drink powder by agro-industrial by-products and freeze-drying. Food Hydrocolloids, 120, 106895. https://doi.org/10.1016/j.foodhyd.2021.106895
Kamra, A., & Bhatt, A. (2012). Evaluation of antimicrobial and antioxidant activity of Ganoderma lucidum extracts against human pathogenic bacteria. International Journal of Pharmacy and Pharmaceutical Sciences, 4(2), 359-362.
Keypour, S., Riahi, H., Moradali, M.-F., & Rafati, H. (2008). Investigation of the antibacterial activity of a chloroform extract of Ling Zhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst. (Aphyllophoromycetideae), from Iran. International Journal of Medicinal Mushrooms, 10(4), 345-349. https://doi.org/10.1615/IntJMedMushr.v10.i4.70
Keypour, S., Riahi, H., & Rafati, H. (2013). A review on the biological active compounds and medicinal properties of Ganoderma lucidum. Journal of Medicinal Plants, 12(46), 13-24. http://dorl.net/dor/20.1001.1.2717204.2013.12.46.2.5
Keypour, S., Riahi, R. H., Rafati, H., & Muradali, M. (2010). Antibacterial activity of aqueous extract of Ganoderma lucidum karst from Iran. Journal of Medicinal Plants, 8(32), 53-59.
Liu, Y., Zhang, D., Ning, Q., & Wang, J. (2023). Growth characteristics and metabonomics analysis of Lactobacillus rhamnosus GG in Ganoderma lucidum aqueous extract medium. Food Bioscience, 53, 102486. https://doi.org/10.1016/j.fbio.2023.102486
Marzhoseyni, Z., Rashki, S., & Nazari-Alam, A. (2023). Evaluation of the inhibitory effects of TiO2 nanoparticle and Ganoderma lucidum extract against biofilm-producing bacteria isolated from clinical samples. Archives of Microbiology, 205(2), 59. https://doi.org/10.1007/s00203-023-03403-4
Modi, H. A., Shah, P., Shukla, M. D., & Lahiri, S. K. (2014). Determination of total phenolic content and antioxidant activity of Ganoderma lucidum collected from Dang district of Gujarat. Natural Products, 10(3), 75-83.
Mohajerfar, T., Hosseinzadeh, A., Akhundzadeh Basti, A., Khanjari, A., Mishaghi, A., & Gandami Nasrabadi, H. (2013). Determination of the minimum inhibitory concentration (MIC) of lysozyme and Shirazi thyme on Listeria monocytogenes. Journal of Medicinal Plants, 11(44), 70-77. http://dorl.net/dor/20.1001.1.2717204.2012.11.44.6.8
Moradali, M. F., Mostafavi, H., Ghods, S., Hedjaroude, G. A. (2007). Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). International Immunopharmacology, 7(6), 701-724. https://doi.org/10.1016/j.intimp.2007.01.008
Noshad, M., & Sahraiyan, B. (2021). Investigation of the minimum inhibitory concentration and the minimum bactericidal concentration of Eucalyptus globulus essential oil on a number of pathogenic bacteria and the cause of food spoilage. Journal of Food Science and Technology, 18(110), 49-57.
Nostro, A., Germano, M. P., D’Agelo, V., Marino, A., & Cannatelli, M. A. (2000). Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Letters in Applied Microbiology, 30(5), 379-384. https://doi.org/10.1046/j.1472-765x.2000.00731.x
Ordonez, A., Gomez, J., Vattuone, M., & Isla, M. I. (2006). Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chemistry, 97(3), 452-458. https://doi.org/10.1016/j.foodchem.2005.05.024
Özbek, H. N., Halahlih, F., Göğüş, F., Koçak Yanık, D., & Azaizeh, H. (2020). Pistachio (Pistacia vera L.) Hull as a potential source of phenolic compounds: Evaluation of ethanol–water binary solvent extraction on antioxidant activity and phenolic content of pistachio hull extracts. Waste and Biomass Valorization, 11(2), 2101-2110. https://doi.org/10.1007/s12649-018-0512-6
Rezaei, M., Azadpour, M., Rumiaei, R., Maadi, H., Rashidipour, M., & Taleai, G. R. (2013). Investigating the antibacterial effects of Medicago sativa L. alfalfa aqueous extract compared to three antibiotics, gentamicin, ciprofloxacin, and penicillin. Scientific-Research Quarterly Journal of Lorestan University of Medical Sciences, 15(2), 61-66.
Sarabi-Jamab, M., Kaveh, M., & Modarres, M. (2020). The Optimization of Solvent Extraction Process from Salvia Leriifolia Leaf Extract Containing Antimicrobial Compounds Using Response Surface Methodology (RSM). Research and Innovation in Food Science and Technology, 9(2), 113-126. https://doi.org/10.22101/JRIFST.2019.11.10.e1085
Sheena, N., Ajith, T., Mathew, A., & Janardhanan, K. (2003). Antibacterial activity of three macrofungi, Ganoderma lucidum, Navesporus floccosa and Phellinus rimosus occurring in South India. Pharmaceutical Biology, 41(8), 564-567. https://doi.org/10.1080/13880200390501226
Shi, W., Hou, Y., Zhang, Z., Yin, X., Zhao, X., & Yuan, L. (2023). Determination of Selenium Speciation in High Se-Enriched Edible Fungus Ganoderma lucidum Via Sequential Extraction. Horticulturae, 9(2), 161. https://doi.org/10.3390/horticulturae9020161
Yang, X., Chen, C., & Mi, K. (2007). The potential use of limulus G test assay for evaluation of immunomodalatory activity of Ganoderma Polysaccarides. International Journal of Medicinal Mushrooms, 9(3-4), 219-220.
Yoon, S. Y., Eo, S. K., Kim, Y. S., Lee, C. K., & Han, S. S. (1994). Antimicrobial activity of Ganoderma lucidum extract alone and in combination with some antibiotics. Archives of Pharmacal Research, 17(6), 438-442. https://doi.org/10.1007/bf02979122
Zhang, H., Cui, S. W., Nie, S. P., Chen, Y., Wang, Y. X., & Xie, M. Y. (2016). Identification of pivotal components on the antioxidant activity of polysaccharide extract from Ganoderma atrum. Bioactive Carbohydrates and Dietary Fibre, 7(2), 9-18. https://doi.org/10.1016/j.bcdf.2016.04.002