A functional and probiotic approach: mixed fruit juice powder with addition of lactobacilli

Autores

  • Ana Laura Rotela RIVEROS Universidade Federal Rural de Pernambuco, Graduate Program in Food Science and Technology, Recife, Pernambuco, Brazil. https://orcid.org/0000-0001-6519-7586
  • Michelle Maria Barreto de SOUZA Universidade Federal Rural de Pernambuco, Graduate Program in Food Science and Technology, Recife, Pernambuco, Brazil. https://orcid.org/0000-0002-5725-7080
  • Thaís Regina Rodrigues VIEIRA Universidade Federal Rural de Pernambuco, Graduate Program in Food Science and Technology, Recife, Pernambuco, Brazil. https://orcid.org/0000-0001-9204-848X
  • Anderson Andrade de SANTANA Universidade Federal Rural de Pernambuco, Graduate Program in Food Science and Technology, Recife, Pernambuco, Brazil. https://orcid.org/0009-0009-6737-1264
  • Jasiel Santos de MORAIS Universidade Federal Rural de Pernambuco, Department of Animal Science, Recife, Pernambuco, Brazil. https://orcid.org/0000-0001-5814-0565
  • Carlos Raimundo Ferreira GROSSO Universidade Federal Rural de Pernambuco, Graduate Program in Food Science and Technology, Recife, Pernambuco, Brazil.
  • Maria Inês Sucupira MACIEL Universidade Federal Rural de Pernambuco, Graduate Program in Food Science and Technology, Recife, Pernambuco, Brazil. https://orcid.org/0000-0002-8910-2833

DOI:

https://doi.org/10.5327/fst.00148%20

Palavras-chave:

Malpighia emarginata D.C., Spondias purpurea L., mixed juice powder stability, probiotics, spray dryer

Resumo

The aim of this study was to evaluate changes in a mixture of acerola and ciriguela juice (40/60%, respectively) and the juice mixture supplemented with Lactobacillus rhamnosus LPAA 01, L. casei LPAA 02, and L. plantarum LPAA 03, ratio 1:1, both powders obtained by spray drying, during storage. The stability of acerola and ciriguela mixed powder without the addition of microorganisms was evaluated for 90 days at 25°C in different water activities (Aws) (0.11, 0.23, and 0.34). Aw that most effectively maintained the stability of mixed powdered juice was used for the evaluation of the fermented mixed juice powder containing probiotics for 45 days at 5 and 25°C, respectively. Samples were characterized by physicochemical properties, bioactive compounds, and cell viability. The physicochemical properties of the powdered mixed juice without the addition of probiotics remained stable when stored at 25°C at an Aw of 0.11 for 60 days. Ascorbic acid, carotenoids, and total phenolics showed favorable characteristics for the commercialization and bioactive properties of the powders, with potential use as functional ingredients in food. Probiotic powders showed viable cell counts above 6.0 log colony-forming units (CFU)/g after storage for up to 20 days at 5°C and up to 14 days at 25°C.

Downloads

Não há dados estatísticos.

Referências

AquaLab (2015). Measurement of water activity for product quality. [Medium] AquaLab. Retrieved from http://www.aqualab.com/education/measurement-of-water-activity-for-product-quality/

Arepally, D., Reddy, R. S., & Goswami, T. K. (2020). Studies on survivability, storage stability of encapsulated spray dried probiotic powder. Current Research in Food Science, 3, 235-242. https://doi.org/10.1016/j.crfs.2020.09.001

Association of Official Analytical Chemists (AOAC). (2006). Official Methods of Analysis (18. ed.). AOAC.

Betored, E., Betored, N., Calabuig-Jiménez, L., Barrera, C., & Rosa, M. D. (2020). Effect of Drying Process, Encapsulation, and Storage on the Survival Rates and Gastrointestinal Resistance of L. Salivarius spp. salivarius Included into a Fruit Matrix. Microorganisms, 8(5), 654. https://doi.org/10.3390/microorganisms8050654

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-31. https://doi.org/10.1016/S0023-6438(95)80008-5

Carmo, E. L., Teodoro, R. A. R., Félix, P. H. C., Fernandes, R. V. B., Oliveira, É. R., Veiga, T. R. L. A., Borges, S. V., & Botrel, D. A. (2018). Stability of spray-dried beetroot extract using oligosaccharides and whey proteins. Food Chemistry, 249, 51-59. https://doi.org/10.1016/j.foodchem.2017.12.076

Fang, Z., & Bhandari, B. (2011). Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chemistry, 129(3), 1139-1147. https://doi.org/10.1016/j.foodchem.2011.05.093

Food and Agriculture Organization (FAO) (2002). Probióticos en los alimentos. Propiedades saludables y nutricionales y directrices para laevaluación. FAO. Retrieved from https://www.fao.org/3/a-a0512s.pdf

González, F., García-Martínez, E., Camacho, M. M., & Martínez-Navarrete, N. (2019). Stability of the physical properties, bioactive compounds and antioxidant capacity of spray-dried grapefruit powder. Food Bioscience, 28, 74-82. https://doi.org/10.1016/j.fbio.2019.01.009

Greenspan, L. (1977). Humidity Fixed Points of Binary Saturated Aqueous Solutions. Journal of Research of the National Bureau of Standards- A. Physics and Chemistry, 81A(1), 89-96. https://doi.org/10.6028/jres.081a.011

Gross, J. (ed.) (1987). Pigments in fruits. Academic Press.

Jeon, E. J., Choi, J. H. Lee, N. Y., Oh, H. J., Kwon, H. S., & Know, J. (2022). Gastroprotective Effects of Fermented Gold Kiwi (Actinidia chinenesis L.) Extracts on HCl/EtOH Induced Gastric Injury in Rats. Applied Sciences, 12(10), 5271. https://doi.org/10.3390/app12105271

Kha, T. C., Nguyen, M. H., Roach, P. D., & Stathopoulos, C.E. (2015). A storage study of encapsulated gac (Momordica cochinchinensis) oil powder and its fortification into foods. Food and Bioproducts Processing, 96, 113-125. https://doi.org/10.1016/j.fbp.2015.07.009

Lascano, R. A., Gan, M. G. L. D., Sulabo, A. S. L., Santiago, D. M. O., Ancheta, L. B., & Zubia, C. S. (2020). Physico-chemical properties, probiotic stability and sensory characteristics of Lactobacillus plantarum S20 – supplemented passion fruit (Passiflora edulis f. flavicarpa Deg.) juice powder. Food Research, 4(2), 320-326. https://doi.org/10.26656/fr.2017.4(2).295

Liu, F., Cao, X., Wang, H., & Liao, X. (2010). Changes of tomato powder qualities during storage. Powder Technology, 204(1), 159-166. https://doi.org/10.1016/j.powtec.2010.08.002

Mestry, A. P., Mujumdar, A. S., & Thorat, B. N. (2011). Optimization of spray drying of an innovative functional food: fermented mixed juice of carrot and watermelon. Drying Technology, 29(10), 1121-1131. https://doi.org/10.1080/07373937.2011.566968

Mishra, P., Brahma, A., & Seth, D. (2017). Physicochemical, functionality and storage stability of hog plum (Spondia pinnata) juice powder produced by spray drying. Journal Food Science and Technology, 54, 1052-1061. https://doi.org/10.1007/s13197-017-2531-x

Misra, S., Pandey, P., Dalbhagat, C. G., & Mishra, H. N. (2022). Emerging Technologies and Coating Materials for Improved Probiotication in Food Products: a Review. Food and Bioprocess Technology, 15, 998-1039. https://doi.org/10.1007/s11947-021-02753-5

Muzaffar, K., & Kumar, P. (2016). Moisture sorption isotherms and storage study of spray dried tamarind pulp powder. Powder Technology, 291, 322-327. https://doi.org/10.1016/j.powtec.2015.12.046

Pavlovska, G., & Tanevska S. (2013). Influence of temperature and humidity on the degradation process of ascorbic acid in vitamin C chewable tablets. Journal of Thermal Analysis and Calorimetry, 111, 1971-1977. https://doi.org/10.1007/s10973-011-2151-z

Pereira, A. L. F., Almeida, F. D. L., Lima, M. A., Costa, J. M. C., & Rodrigues, S. (2014). Spray-Drying of probiotic cashew apple juice. Food and Bioprocess Technology, 7, 2492-2499. https://doi.org/10.1007/s11947-013-1236-z

Peres, C. M., Peres, C., Hernández-Mendoza, A., Malcata, F. X. (2012). Review on fermented plant materials as carriers and sources of potentially probiotic lactic acid bacteria-with an emphasis on table olives. Trends in Food Science and Technology, 26(1), 31-42. https://doi.org/10.1016/j.tifs.2012.01.006

Porto, M., Okina, V., Pimentel, T., & Prudencio, S. (2017). Physicochemical stability, antioxidant activity and acceptance of beet and orange mixed juice during refrigerated storage. Beverages, 3(3), 36. https://doi.org/10.3390/beverages3030036

Re, R., PellegrinI, N., Proteggente, A., Pannala, A., Yang, M., & Riceevans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Reis, D. S., Figueiredo Neto, A., Ferraz, A.V., & Freitas, S. T. (2017). Production and storage stability of acerola flour dehydrated at different temperatures. Brazilian Journal of Food Technology, 20, 1-7. https://doi.org/10.1590/1981-6723.8315

Ribeiro, C. M. C. M., Magliano, L. C. S. A., Costa, M. M. A., Bezerra, T. K. A., Silva, F. L. H., & Maciel, M. I. S. (2018). Optimization of the spray drying process conditions for acerola and seriguela juice mix. Food Science and Technology, 39(Suppl. 1), 48-55. https://doi.org/10.1590/fst.36217

Rodriguez-Amaya, D. B. (2001). A guide to carotenoid analysis en foods. ILSI Press.

Sanchez-Moreno, C., Larrauri, J. A., & Saura-Calixto, F. (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 76(2), 270-276. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2%3C270::AID-JSFA945%3E3.0.CO;2-9

Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R., & Rastall, R. A. (2019). Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nature Reviews Gastroenterology & Hepatolology, 16, 605-616. https://doi.org/10.1038/s41575-019-0173-3

Santos Filho, A. L., Freitas, H. V., Rodrigues, S., Abreu, V. K. G., Lemos, T. O., Gomes, W. F, Narain, N., & Pereira, A, L. F. (2019). Production and stability of probiotic cocoa juice with sucralose as sugar substitute during refrigerated storage. LWT - Food Science and Technology, 99, 371-378. https://doi.org/10.1016/J.LWT.2018.10.007

Sharma, R., Rashidinejad, A., & Jafari, S. M. (2022). Application of spray dried encapsulated probiotics in functional food formulations. Food Bioprocess Technology, 15, 2135-2154. https://doi.org/10.1007/S11947-022-02803-6

Silva, P. I., Stringheta, P. C., Teófilo, R. F., & Oliveira, I. R. N. (2013). Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciariajaboticaba) peel extracts using simultaneous analysis of responses. Journal of Food Engineering, 117(4), 538-544. https://doi.org/10.1016/j.jfoodeng.2012.08.039

Silva, R. N. G., Figueiredo, R. M. F., Queiroz, A. J. M., & Galdino, P. O. (2005). Storage of umbu-cajá powder. Ciência Rural, 35(5), 1179-1184. https://doi.org/10.1590/S0103-84782005000500030

Souza, M. M. B., Mesquita, A., Souza, P., Borges, G., Silva, T., & Maciel, M. I. S. (2021). New functional non-dairy mixed tropical fruit juice microencapsulated by spray drying: Physicochemical characterization, bioaccessibility, genetic identification and stability. LWT – Food Science and Technology, 152, 112271. https://doi.org/10.1016/j.lwt.2021.112271

Szutowska, J. (2020). Functional properties of lactic acid bacteria in fermented fruit and vegetable juices: A systematic literature review. European Food Research and Technology, 246(3), 357-372. https://doi.org/10.1007/s00217-019-03425-7

Todisco, K. M., Da Costa, J. M. C., & Clemente, E. (2015). Alterations in carotenoids, phenolic compounds, flavonoids and ascorbic acid contents in red mombin (Spondias purpurea L.) microencapsulated pulp. Journal of Food Agriculture and Environment, 13(1), 24-28. Retrieved from http://hdl.handle.net/11449/171776

Tontul, I., & Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science and Technology, 63, 91-102. https://doi.org/10.1016/j.tifs.2017.03.009

Tripathi, M. K., & Giri, S. K. (2014). Probiotic functional foods: survival of probiotics during processing and storage. Journal of Functional Foods, 9, 225-241. https://doi.org/10.1016/j.jff.2014.04.030

Udomkun, P., Nagle, M., Argyropoulos, D., Mahayothee, B., Latif, S., & Müller, J. (2016). Compositional and functional dynamics of dried papaya as affected by storage time and packaging material. Food Chemistry, 196, 712-719. https://doi.org/10.1016/j.foodchem.2015.09.103

Vieira, L. M., Sousa, M. S. B., Mancini-Filho, J., & Lima, A. D. (2011). Fenólicos totais e capacidade antioxidante in vitro de polpas de frutos tropicais. Revista Brasileira de Fruticultura, 33(3), 888-897. https://doi.org/10.1590/S0100-29452011005000099

Vivek, K., Mishra, S., & Pradhan, R. C. (2020). Characterization of spray dried probiotic Sohiong fruit powder with Lactobacillus plantarum. LWT – Food Science and Technology, 117, 108699. https://doi.org/10.1016/j.lwt.2019.108699

Wettasinghe, M., & Shahidi, F. (1999). Evening primrose meal: a source of natural antioxidants and scavenger of hydrogen peroxide and oxygen-derived free radicals. Journal of Agricultural and Food Chemistry, 47(5), 1801-1812. https://doi.org/10.1021/jf9810416

Xu, M., Shen, C., Zheng, H., Xu, Y., Xue, C., Zhu, B., & Hu, J. (2020). Metabolomic analysis of acerola cherry (Malpighia emarginata) fruit during ripening development via UPLC-Q-TOF and contribution to the antioxidant activity. Food Research International, 130, 108915. https://doi.org/10.1016/j.foodres.2019.108915

Downloads

Publicado

2024-04-08

Como Citar

RIVEROS, A. L. R., SOUZA, M. M. B. de, VIEIRA, T. R. R., SANTANA, A. A. de, MORAIS, J. S. de, GROSSO, C. R. F., & MACIEL, M. I. S. (2024). A functional and probiotic approach: mixed fruit juice powder with addition of lactobacilli. Food Science and Technology, 44. https://doi.org/10.5327/fst.00148

Edição

Seção

Artigos Originais