Efficacy assessment of prebiotic enriched camel milk along with various prebiotic combinations against metabolic syndrome using animal model

Autores

DOI:

https://doi.org/10.5327/fst.130322

Palavras-chave:

metabolic syndrome x, prebiotic, antioxidants, hyperlipidemias, glycemic control

Resumo

Metabolic syndrome (MetS) is a public health concern even in apparently healthy individuals. This study was conducted with the main objective to evaluate the potential role of prebiotic enriched camel milk (PECM) as a functional food, against different biomarkers of MetS in comparison to fresh camel milk (CM) and other prebiotic sources, i.e., chicory root powder (CRP) and galacto-oligosaccharides (GOS) in rat’s model. The MetS was induced through a high-fat diet and streptozotocin. The PECM, CM, CRP, and GOS were fed to rats for 8 weeks, and different biochemical parameters were measured on baseline (0th day), 20th day, and 40th day. Prebiotics were able to significantly reduce the concentration of low-density lipoprotein, triglycerides, total cholesterol, and glucose compared to the control group with PECM being the most effective of all groups, whereas liver enzymes (ALT, AST, and AP) were significantly reduced and antioxidants improved by CM and PECM than other prebiotics and control. Histopathology results revealed improvement in degeneration and hydropic atrophies in the hepatocytes of the treatment group. It is concluded that PECM is effective in the management of MetS biomarkers and can improve the parameters of hyperlipidemia, liver enzymes, antioxidants, and glycemic control.

Downloads

Não há dados estatísticos.

Referências

Abrhaley, A., & Leta, S. (2018). Medicinal value of camel milk and meat. Journal of Applied Animal Research, 46(1), 552-558. https://doi.org/10.1080/09712119.2017.1357562

Adil, S. O., Islam, M. A., Musa, K. I., & Shafique, K. (2023). Prevalence of Metabolic Syndrome among Apparently Healthy Adult Population in Pakistan: A Systematic Review and Meta-Analysis. Healthcare, 11(4), 531. https://doi.org/10.3390/healthcare11040531

Bancroft, J. D., & Gamble, M. (2008). Theory and practice of histological techniques. Elsevier Health Sciences.

Cani, P. D., & Delzenne, N. M. (2011). The gut microbiome as therapeutic target. Pharmacology & Therapeutics, 130(2), 202-212. https://doi.org/10.1016/j.pharmthera.2011.01.012

Elayan, A. A., Sulieman, A., & Saleh, F. (2008). The hypocholesterolemic effect of Gariss and Gariss containing bifidobacteria in rats fed on a cholesterol-enriched diet. Asian Journal of Biochemistry, 3(1), 43-47. https://doi.org/10.3923/ajb.2008.43.47

Fallah, Z., Feizi, A., & Kelishadi, R. (2018a). Effect of fermented camel milk on glucose metabolism, insulin resistance, and inflammatory biomarkers of adolescents with metabolic syndrome: A double-blind, randomized, crossover trial. Journal of Research in Medical Sciences, 23(1): 32. https://doi.org/10.4103/jrms.JRMS_1191_17

Fallah, Z., Feizi, A., Hashemipour, M., & Kelishadi, R. (2018b). Positive effect of fermented camel milk on liver enzymes of adolescents with metabolic syndrome: A double blind, randomized, cross-over trial. Materia Socio Medica, 30(1), 20-25. https://doi.org/10.5455/msm.2018.30.20-25

Gangwar, L., Singh, R., & Deepak, D. (2018). Structure elucidation of a novel oligosaccharide (Medalose) from camel milk. Journal of Molecular Structure, 1153, 157-161. https://doi.org/10.1016/j.molstruc.2017.10.006

Haddadin, M. S., Gammoh, S. I., & Robinson, R. K. (2008). Seasonal variations in the chemical composition of camel milk in Jordan. Journal of Dairy Research, 75(1), 8-12. https://doi.org/10.1017/S0022029907002750

Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., & Salminen, S. (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506-514. https://doi.org/10.1038/nrgastro.2014.66

Hoggatt, J., Hoggatt, A. F., Tate, T. A., Fortman, J., & Pelus, L. M. (2016). Bleeding the laboratory mouse: Not all methods are equal. Experimental Hematology, 44(2), 132-137. https://doi.org/10.1016/j.exphem.2015.10.008

Iqbal, S., Nguyen, T.-H., Nguyen, H. A., Nguyen, T. T., Maischberger, T., Kittl, R., & Haltrich, D. (2011). Characterization of a heterodimeric GH2 β-galactosidase from Lactobacillus sakei Lb790 and formation of prebiotic galacto-oligosaccharides. Journal of Agricultural and Food Chemistry, 59(8), 3803-3811. https://doi.org/10.1021/jf103832q

Iqbal, S., Nguyen, T.-H., Nguyen, T. T., Maischberger, T., & Haltrich, D. (2010). β-Galactosidase from Lactobacillus plantarum WCFS1: biochemical characterization and formation of prebiotic galacto-oligosaccharides. Carbohydrate Research, 345(10), 1408-1416. https://doi.org/10.1016/j.carres.2010.03.028

Isa, S. A., Ibrahim, K. G., Onu, A., Shinkafi, S. K., Ismail, R. N., & Shinkafi, T. S. (2019). Hypolipidemic and antioxidant effects of camel milk in high fat diet fed hyperlipidemic rats. International Journal of Biomedical Science, 3(2). https://doi.org/10.32553/ijmbs.v3i2.131

Kargar, B., Zamanian, Z., Hosseinabadi, M. B., Gharibi, V., Moradi, M. S., & Cousins, R. (2021). Understanding the role of oxidative stress in the incidence of metabolic syndrome and obstructive sleep apnea. BMC Endocrine Disorders, 21(1), 77. https://doi.org/10.1186/s12902-021-00735-4

Konuspayeva, G. S. (2020). Camel milk composition and nutritional value. In Alhaj, O. A., Faye, B., & Agrawal, R. P. (eds.). Handbook of Research on Health and Environmental Benefits of Camel Products (pp. 15-40). IGI Global.

McCracken, E., Monaghan, M., & Sreenivasan, S. (2018). Pathophysiology of the metabolic syndrome. Clinics in Dermatology, 36(1), 14-20. https://doi.org/10.1016/j.clindermatol.2017.09.004

Megur, A., Daliri, E. B., Baltriukienė, D., & Burokas, A. (2022). Prebiotics as a Tool for the Prevention and Treatment of Obesity and Diabetes: Classification and Ability to Modulate the Gut Microbiota. International Journal of Molecular Sciences, 23(11), 6097. https://doi.org/10.3390/ijms23116097

Miller, D., & Bender, A. E. (1955). The determination of the net utilization of proteins by a shortened method. British Journal of Nutrition, 9(4), 382-388. https://doi.org/10.1079/BJN19550055

Mohamad, R. H., Zekry, Z. K., Al-Mehdar, H. A., Salama, O., El-Shaieb, S. E., El-Basmy, A. A., Al-said, M. G. A. M., & Sharawy, S. M. (2009). Camel milk as an adjuvant therapy for the treatment of type 1 diabetes: verification of a traditional ethnomedical practice. Journal of Medicinal Food, 12(2), 461-465. https://doi.org/10.1089/jmf.2008.0009

Pandey, L., Mogra, R., & Singh, S. (2019). Therapeutic applications of probiotic and prebiotic in metabolic syndrome and chronic kidney diseases. Research & Reviews, Pharmacognosy and Phytochemistry, 8(2), 939-945.

Quigley, E. M. (2019). Prebiotics and probiotics in digestive health. Clinical Gastroenterology and Hepatology, 17(2), 333-344. https://doi.org/10.1016/j.cgh.2018.09.028

Raza, A., Iqbal, S., Ullah, A., Khan, M. I., & Imran, M. (2018). Enzymatic conversion of milk lactose to prebiotic galacto‐oligosaccharides to produce low lactose yogurt. Journal of Food Processing and Preservation, 42(4), e13586. https://doi.org/10.1111/jfpp.13586

Reagan‐Shaw, S., Nihal, M., & Ahmad, N. (2008). Dose translation from animal to human studies revisited. The FASEB Journal, 22(3), 659-661. https://doi.org/10.1096/fj.07-9574LSF

Roberfroid, M., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., Wolvers, D., Watzl, B., Szajewska, H., & Stahl, B. (2010). Prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 104(Suppl. 2): S1-S63. https://doi.org/10.1017/S0007114510003363

Sakandar, H. A., Ahmad, S., Perveen, R., Aslam, H. K. W., Shakeel, A., Sadiq, F. A., & Imran, M. (2018). Camel milk and its allied health claims: a review. Progress in Nutrition, 20(Suppl. 1): 15-29. https://doi.org/10.23751/pn.v20i1-S.5318

Shahzad, T., Iqbal, S., Nasir, M., Anjum, A. A., Imran, M., Saeed, F., Mahomoodally, M. F., Mehmood, T., Zengin, G., Mushtaq, Z., Hussain, M., & Al Jbawi, E. (2022). Comparative analysis of preventive role of different probiotics and prebiotics against the markers of liver damage, oxidative stress markers and inflammatory markers in the non-alcoholic fatty liver disease induced rats. International Journal of Food Properties, 25(1), 2514-2529. https://doi.org/10.1080/10942912.2022.2144881

Sreeramya, G., Nalini, C., Ramalakshmi, N., Sahini, K., & Lakshmi, S. A. (2018). A new Era in Medicine–Neutraceuticals. Research Journal of Pharmacy and Technology, 11(8), 3572-3576. https://doi.org/10.5958/0974-360X.2018.00657.1

Xavier-Santos, D., Bedani, R., Lima, E. D., & Saad, S. M. I. (2020). Impact of probiotics and prebiotics targeting metabolic syndrome. Journal of Functional Foods, 64, 103666. https://doi.org/10.1016/j.jff.2019.103666

Downloads

Publicado

2023-08-23

Como Citar

ASHRAF, I., IQBAL, S., AHMED, W., & REHMAN, H. ur. (2023). Efficacy assessment of prebiotic enriched camel milk along with various prebiotic combinations against metabolic syndrome using animal model. Food Science and Technology, 43. https://doi.org/10.5327/fst.130322

Edição

Seção

Artigos Originais