Valorisation of goldenberry calyx: ultrasound-assisted extraction of phenolic compounds

Autores

DOI:

https://doi.org/10.5327/fst.5623

Palavras-chave:

Physalis peruviana L., circular economy, valorisation strategy, fruit by-product, rutin, antioxidant activity

Resumo

The extraction of value-added compounds from agro-industrial wastes is important to reduce their environmental impact. In this research, the time for ultrasound-assisted extraction of phenolic compounds obtained from goldenberry (Physalis peruviana L.) calyx was first chosen. Subsequently, response surface methodology was used to optimise the effect of wave amplitude, liquid:solid ratio, and particle size on total phenol content and in vitro antioxidant capacity. Then, antioxidant capacity (DPPH, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and ferric reducing antioxidant power) was measured in the extract obtained under optimal conditions, and rutin flavanol was identified and quantified by HPLC-DAD. Analysis of polynomial models indicated adequate fit (p≤0.05) for phenolic content (R2=0.98) and antioxidant capacity (R2=0.91). Optimal amplitude (54%), liquid:solid ratio (33 mL/g), and particle size (213 µm) maximised the response of phenolic content (53 mg GAE/g) and antioxidant capacity (167 μmol TE/g). The in vitro antioxidant capacity of the extract was demonstrated, and a high rutin concentration (19 mg/g) was found in the extract obtained under optimum conditions. High extraction yields of phenolic compounds were found using the shortest time (i.e., 10 min), intermediate particle diameters, a low amount of solvent, and low energy consumption.

Downloads

Não há dados estatísticos.

Referências

Aadil, R. M., Zeng, X. A., Han, Z., & Sun, D. W. (2013). Effects of ultrasound treatments on quality of grapefruit juice. Food Chemistry, 141(3), 3201-3206. https://doi.org/10.1016/J.FOODCHEM.2013.06.008

Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4, 200-214. https://doi.org/10.1016/J.CRFS.2021.03.011

Ali, A., Lim, X. Y., Chong, C. H., Mah, S. H., & Chua, B. L. (2018). Ultrasound-assisted extraction of natural antioxidants from betel leaves (Piper betle): Extraction kinetics and modeling. Separation Science and Technology, 53(14), 2192-2205. https://doi.org/10.1080/01496395.2018.1443137

Ballesteros-Vivas, D., Álvarez-Rivera, G., Ibáñez, E., Parada-Alfonso, F., & Cifuentes, A. (2019). A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Journal of Chromatography A, 1584, 144-154. https://doi.org/10.1016/j.chroma.2018.11.054

Belwal, T., Ezzat, S. M., Rastrelli, L., Bhatt, I. D., Daglia, M., Baldi, A., Devkota, H. P., Orhan, I. E., Patra, J. K., Das, G., Anandharamakrishnan, C., Gomez-Gomez, L., Nabavi, S. F., Nabaci, S. M., & Atanasov, A. G. (2018). A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. TrAC Trends in Analytical Chemistry, 100, 82-102. https://doi.org/10.1016/j.trac.2017.12.018

Bouafia, M., Colak, N., Ayaz, F. A., Benarfa, A., Harrat, M., Gourine, N., & Yousfi, M. (2021). The optimization of ultrasonic-assisted extraction of Centaurea sp. antioxidative phenolic compounds using response surface methodology. Journal of Applied Research on Medicinal and Aromatic Plants, 25, 100330. https://doi.org/10.1016/J.JARMAP.2021.100330

Carbone, K., Macchioni, V., Petrella, G., Cicero, D. O. (2020). Exploring the potential of microwaves and ultrasounds in the green extraction of bioactive compounds from Humulus lupulus for the food and pharmaceutical industry. Industrial Crops and Products, 156, 112888. https://doi.org/10.1016/J.INDCROP.2020.112888

Cardona, M. I., Toro, R. M., Costa, G. M., Ospina, L. F., Castellanos, L., Ramos, F. A., & Aragón, D. M. (2017). Influence of extraction process on antioxidant activity and rutin content in Physalis peruviana calyces extract. Journal of Applied Pharmaceutical Science, 7(6), 164-168. https://doi.org/10.7324/JAPS.2017.70623

Castañeda-Valbuena, D., Ayora-Talavera, T., Luján-Hidalgo, C., Álvarez-Gutiérrez, P., Martínez-Galero, N., & Meza-Gordillo, R. (2021). Ultrasound extraction conditions effect on antioxidant capacity of mango by-product extracts. Food and Bioproducts Processing, 127, 212-224. https://doi.org/10.1016/J.FBP.2021.03.002

Dadi, D. W., Emire, S. A., Hagos, A. D., Eun, J. B. (2019). Effect of ultrasound-assisted extraction of Moringa stenopetala leaves on bioactive compounds and their antioxidant activity. Food Technology & Biotechnology, 57(1), 77-86. https://doi.org/10.17113/ftb.57.01.19.5877

Dal Prá, V., Dolwitsch, C. B., Lima, F. O., Carvalho, C. A., Viana, C., Nascimento, P. C., & Rosa, M. B. (2015). Ultrasound-assisted extraction and biological activities of extracts of Brassica oleracea var. capitata. Food Technology & Biotechnology, 53(1), 102-109. https://doi.org/10.17113/ftb.53.01.15.3533

Dash, D. R., Pathak, S. S., & Pradhan, R. C. (2021). Extraction of oil from Terminalia chebula kernel by using ultrasound technology: Influence of process parameters on extraction kinetics. Industrial Crops and Products, 171, 113893. https://doi.org/10.1016/j.indcrop.2021.113893

Demirci, M., Tomas, M., Tekin-Çakmak, Z. H., & Karasu, S. (2022). Berberis crataegina DC. as a novel natural food colorant source: ultrasound-assisted extraction optimization using response surface methodology and thermal stability studies. Food Science and Technology, 42, e03421. https://doi.org/10.1590/fst.13421

Embaby, H. E., Miyakawa, T., Hachimura, S., Muramatsu, T., Nara, M., & Tanokura, M. (2022). Crystallization and melting properties studied by DSC and FTIR spectroscopy of goldenberry (Physalis peruviana) oil. Food Chemistry, 366, 130645. https://doi.org/10.1016/J.FOODCHEM.2021.130645

Fan, Y., Ma, M., Chen, J., Pei, Y., & Sun, X. (2022). Stability and antioxidant activity of flavonoids from Lycium barbarum L. leaves during digestion in vivo. Food Science Technology, 42, e87322. https://doi.org/10.1590/fst.87322

Garcia-Castello, E. M., Rodriguez-Lopez, A. D., Mayor, L., Ballesteros, R., Conidi, C., & Cassano, A. (2015). Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. LWT - Food Science Technology, 64(2), 1114-1122. https://doi.org/10.1016/j.lwt.2015.07.024

Gironés-Vilaplana, A., Baenas, N., Villaño, D., Speisky, H., García-Viguera, C., & Moreno, D. A. (2014). Evaluation of Latin-American fruits rich in phytochemicals with biological effects. Journal of Functional Foods, 7, 599-608. https://doi.org/10.1016/j.jff.2013.12.025

Görgüç, A., Gençdağ, E., Demirci, K., Vayiç, A., & Yilmaz, F. M. (2022). The effect of high-power ultrasound pretreatment on drying efficiency and bioactive compounds of chokeberry (Aronia melanocarpa L.). Food Science and Technology International, 29(5), 480-490. https://doi.org/10.1177/10820132221094787

Guandalini, B. B. V., Rodrigues, N. P., & Marczak, L. D. F. (2019). Sequential extraction of phenolics and pectin from mango peel assisted by ultrasound. Food Research International, 119, 455-461. https://doi.org/10.1016/j.foodres.2018.12.011

Gullón, B., Lú-Chau, T. A., Moreira, M. T., Lema, J. M., & Eibes, G. (2017). Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends in Food Science Technology, 67, 220-235. https://doi.org/10.1016/J.TIFS.2017.07.008

ICONTEC (1999). NTC 4580: Frutas frescas. Uchuva. Especificaciones.

Kalogiouri, N. P., Kokokiris, L. E., Doulgeraki, S., Papadopoulos, A. N., Samanidou, V. F. (2021). Determination of phenolic antioxidants in tuna fillets canned in hydrosols with HPLC-DAD. International Journal of Food Science Technology, 56(8), 4091-4097. https://doi.org/10.1111/IJFS.15034

León-Roque, N., Romero, B. M., Oblitas-Cruz, J. F., Hidalgo-Chávez, D. W. (2023). Optimization of total polyphenol extraction and flavonoid screening by mass spectrometry in mango (Mangifera indica L.) waste from Peru. Food Science Technology, 43, e105322. https://doi.org/10.1590/fst.105322

Lezoul, N. E. H., Belkadi, M., Habibi, F., & Guillén, F. (2020). Extraction processes with several solvents on total bioactive compounds in different organs of three medicinal plants. Molecules, 25(20), 4672. https://doi.org/10.3390/molecules25204672

Mesquita, M. da S., Santos, P. D. de F., Holkem, A. T., Thomazini, M., Rodrigues, C. E. C., Fernandes, A. M., & Favaro-Trindade, C. S. (2023). Papaya seeds (Carica papaya L. var. Formosa) in different ripening stages: unexplored agro-industrial residues as potential sources of proteins, fibers and oil as well as high antioxidant capacity. Food Science and Technology, 43, e105422. https://doi.org/10.1590/fst.105422

Milićević, N., Kojić, P., Sakač, M., Milsan, A., Kojic, J., Perusello, C., Banjac, V., Pojic, M., & Tiwari, B. (2021). Kinetic modelling of ultrasound-assisted extraction of phenolics from cereal brans. Ultrasonics Sonochemistry, 79, 105761. https://doi.org/10.1016/J.ULTSONCH.2021.105761

Ministerio de Agricultura (2022). Colombia es el mayor productor y exportador de uchuva a nivel mundial. Ministerio de Agricultura. Retrieved from https://www.minagricultura.gov.co/noticias/Paginas/Colombia-es-el-mayor-productor-y-exportador-de-uchuva-a-nivel-mundial.aspx#:~:text=630 en el año 2020,y exportador de esta fruta

Monteiro, S. F., Costa, E. L. N., Ferreira, R. S. B., & Chisté, R. C. (2022). Simultaneous extraction of carotenoids and phenolic compounds from pulps of orange and yellow peach palm fruits (Bactris gasipaes) by ultrasound-assisted extraction. Food Science and Technology, 42, e34021. https://doi.org/10.1590/fst.34021

Mrkonjić, Ž., Rakić, D., Olgun, E. O., Canli, O., Kaplan, M., Teslic, N., Zekovic, Z., & Pavlic, B. (2021). Optimization of antioxidants recovery from wild thyme (Thymus serpyllum L.) by ultrasound-assisted extraction: Multi-response approach. Journal of Applied Research on Medicinal and Aromatic Plants, 24, 100333. https://doi.org/10.1016/j.jarmap.2021.100333

Nguyen, K. N. H., Nguyen, N. V. T., & Kim, K. H. (2021). Determination of phenolic acids and flavonoids in leaves, calyces, and fruits of Physalis angulata L. in Viet Nam. Pharmacia, 68(2), 501-509. https://doi.org/10.3897/PHARMACIA.68.E66044

Niknam, S. M., Kashaninejad, M., Escudero, I., Sanz, M. T., Beltrán, S., & Benito, J. M. (2021). Valorization of olive mill solid residue through ultrasound-assisted extraction and phenolics recovery by adsorption process. Journal of Cleaner Production, 316, 128340. https://doi.org/10.1016/j.jclepro.2021.128340

Pradal, D., Vauchel, P., Decossin, S., Dhulster, P., & Dimitrov, K. (2016). Kinetics of ultrasound-assisted extraction of antioxidant polyphenols from food by-products: Extraction and energy consumption optimization. Ultrasonics Sonochemistry, 32, 137-146. https://doi.org/10.1016/j.ultsonch.2016.03.001

Setyaningsih, W., Saputro, I. E., Palma, M., & Barroso, C. G. (2016). Stability of 40 phenolic compounds during ultrasound-assisted extractions (UAE). AIP Conference Proceedings, 1755: 080009.

Teigiserova, D. A., Hamelin, L., & Thomsen, M. (2020). Towards transparent valorization of food surplus, waste and loss: Clarifying definitions, food waste hierarchy, and role in the circular economy. Science of the Total Environment, 706, 136033. https://doi.org/10.1016/j.scitotenv.2019.136033

Tirado, D. F., de la Fuente, E., Calvo, L. (2019). A selective extraction of hydroxytyrosol rich olive oil from alperujo. Journal of Food Engineering, 263, 409-416. https://doi.org/10.1016/j.jfoodeng.2019.07.030

Tlili, N., Sarikurkcu, C. (2020). Bioactive compounds profile, enzyme inhibitory and antioxidant activities of water extracts from five selected medicinal plants. Industrial Crops and Production, 151, 112448. https://doi.org/https://doi.org/10.1016/j.indcrop.2020.112448

Torres-Gallo, R., Bayuelo-Bonilla, S., Carpio-Ortiz, L., Barreto-Rodriguez, L., & Tirado, D. F. (2022). High-intensity ultrasound-assisted extraction of pectin from mango wastes at different maturity. International Journal of Food Science, 2022, 4606024. https://doi.org/10.1155/2022/4606024

Vinatoru, M., Mason, T. J., & Calinescu, I. (2017). Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends in Analytical Chemistry, 97, 159-178. https://doi.org/10.1016/j.trac.2017.09.002

Wen, C., Zhang, J., Zhang, H., Dzah, C. S., Zandile, M., Duan, Y., Ma, H., & Luo, X. (2018). Advances in ultrasound assisted extraction of bioactive compounds from cash crops – A review. Ultrasonics Sonochemistry, 48, 538-549. https://doi.org/10.1016/j.ultsonch.2018.07.018

Xu, X., Ren, S., Wang, D., Ma, J., Yan, X., Guo, Y., Liu, X., & Pan, Y. (2022). Optimization of extraction of defatted walnut powder by ultrasonic assisted and artificial neural network. Food Science Technology, 42, e53320. https://doi.org/10.1590/fst.53320

Yarce, C. J., Alhajj, M. J., Sanchez, J. D., Oñate-Garzón, J., & Salamanca, C. H. (2020). Development of antioxidant-loaded nanoliposomes employing lecithins with different purity grades. Molecules, 25(22), 5344. https://doi.org/10.3390/MOLECULES25225344

Zhao, Y., Hou, Y., Tang, G., Cai, E., Liu, S., Yang, H., Zhang, L., & Wang, S. (2014). Optimization of ultrasonic extraction of phenolic compounds from Epimedium brevicornum Maxim using response surface methodology and evaluation of its antioxidant activities in vitro. Journal of Analytical Methods in Chemistry, 2014, 864654. https://doi.org/10.1155/2014/864654

Zhou, Y., Zheng, J., Gan, R.-Y., Zhou, T., Xu, D.-P., & Li, H.-B. (2017). Optimization of ultrasound-assisted extraction of antioxidants from the mung bean coat. Molecules, 22(4), 638. https://doi.org/10.3390/molecules22040638

Zitha, E. Z. M., Araújo, A. B. S., Machado, P. da S., Elias, H. H. S., Carvalho, E. E. N., & Vilas Boas, E. V. (2022). Impact of processing and packages on bioactive compounds and antioxidant activity of Mangaba Jelly. Food Science Technology, 42, e28221. https://doi.org/10.1590/fst.28221

Downloads

Publicado

2023-08-22

Como Citar

TOBAR-DELGADO, E., TORRES-CASTAÑEDA, H., SERNA-COCK, L., OSORIO-MORA, O., & TIRADO, D. F. (2023). Valorisation of goldenberry calyx: ultrasound-assisted extraction of phenolic compounds. Food Science and Technology, 43. https://doi.org/10.5327/fst.5623

Edição

Seção

Artigos Originais