Acerola (Malpighia emarginata) pulp: characterization and stability of anthocyanins under different conditions
DOI:
https://doi.org/10.5327/fst.0000110%20Palavras-chave:
pigment stability, acerola pulp, bioactive compounds, food compositionResumo
Tropical fruits provide a high economic potential and their inclusion in the diet can provide health benefits. In this sense, this study aimed to evaluate the proximal composition, bioactive compounds, antioxidant activity, and stability of anthocyanins of acerola pulp in the absence and presence of light at temperatures of 7 and 21.7°C. The results for the proximal composition (g/100 g) were 93.49 moisture, 0.04 protein, 0.09 lipid, 0.60 ash, and 6.28 carbohydrates, totaling a 28.29 kcal/100 g caloric value. For total bioactive compounds, the results were 3.22 µg/g chlorophyll, 29.71 µg/g carotenoids, 3.74 g/100 g flavonoids, and 6.12 mg/100 g phenolic compounds. Acerola pulp showed high antioxidant activity by DPPH and ABTS methods with values of 6.17 μmol/g and 3.19 mM TEAC/g, respectively. Regarding the stability of anthocyanins, in acerola pulp stored away from light and at a temperature of 7°C, these pigments remained more stable than when subjected to light and a temperature of 21°C. Thus, it was possible to perceive that, in addition to the acerola being important for the food industry, storage under low temperatures and the absence of light can contribute to greater stability of anthocyanin pigments.
Downloads
Referências
Adriano, E., Leonel, S., & Evangelista, R. M. (2011). Qualidade de fruto da aceroleira cv. Olivier em dois estádios de maturação. Revista Brasileira de Fruticultura, 33(Spe. 1), 541-545. https://doi.org/10.1590/S0100-29452011000500073
Akbari, B., Baghaei‐Yazdi, N., Bahmaie, M., & Mahdavi Abhari, F. (2022). The role of plant‐derived natural antioxidants in reduction of oxidative stress. Biofactors, 48(3), 611-633. https://doi.org/10.1002/biof.1831
Almeida, A., Silva, A., Lodete, A., Egea, M., Lima, M., & Silva, F. (2019). Assessment of chemical and bioactive properties of native fruits from the Brazilian Cerrado. Nutrition & Food Science, 49(3), 381-392. https://doi.org/10.1108/NFS-07-2018-0199
Aquino, A. C. M. S., Carnelossi, M. A. G., & Castro, A. A. (2011). Estabilidade do ácido ascórbico e dos pigmentos da polpa de acerola congelada por métodos convencional e criogênico. Boletim do Centro de Pesquisa de Processamento de Alimentos, 29(1).
Association of Official Analytical Chemists (AOAC) (1994). Official Methods of Analysis. Association of Official Analytical Chemists.
Association of Official Analytical Chemists (AOAC) (2005). Official methods of analysis. Association of Official Analytical Chemists.
Benassi, M., & Antunes, A. (1988). A comparison of metaphosphoric and oxalic acids as extractans solutions for the determination of vitamin C in selected vegetables. Arquivos de Biologia e Tecnologia, 31(4), 507-513.
Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099
Brand-Williams, W., Cuvelier, M.-E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Brasil (2016). Ministério da Agricultura e do Abastecimento. Portaria No. 58, de 30 de agosto de 2016. Regulamento técnico geral para fixação dos padrões de identidade e qualidade para polpa de frutas. Diário Oficial [da] República Federativa do Brasil.
Brunini, M. A., Macedo, N. B., Coelho, C. V., & Siqueira, G. F. (2004). Caracterização física e química de acerolas provenientes de diferentes regiões de cultivo. Revista Brasileira de Fruticultura, 26(3), 486-489. https://doi.org/10.1590/S0100-29452004000300027
Bruuinsma, J. (1963). The quantitative analysis of chlorophylls a and b in plant extracts. Photochemistry and Photobiology, 2(2), 241-249. https://doi.org/10.1111/j.1751-1097.1963.tb08220.x
Castro, C. S., Cotrim, C. F. C., Santos, I. R., Santos, K. J. G., Paula, J. A. M., Caramori, S. S., Almeida, L. M. , Bailão, E. F. L. C., & Borges, L. L. (2022). Application of natural antioxidants in animal reproduction. Ciência Animal Brasileira, 23, e73601E. https://doi.org/10.1590/1809-6891v23e-73601E
Costa, J. A., Santos, J. T. O., Bacelar, R. G. A., Carneiro, R. M., Silva, D. S. N., Nóbrega, M. M. G. P., & Muratori, M. C. S. (2022). Dairy drink fermented with chia seed and acerola syrup: physicochemical, microbiological, and sensory characterization. Ciência Animal Brasileira, 23, e72395E. https://doi.org/10.1590/1809-6891v23e-72395E
da Silva, J. D. O., Santos, D. E. L., de Souza Abud, A. K., & de Oliveira Júnior, A. M. (2020). Characterization of acerola (Malpighia emarginata) industrial waste as raw material for thermochemical processes. Waste Management, 107, 143-149. https://doi.org/10.1016/j.wasman.2020.03.037
de Almeida, E. R., de Oliveira, J. R. G., Lucena, F. F. R., de Freitas Soares, R. P., & Couto, G. B. L. (2006). The Action of Extract of the Dry Leaves. Acta Farm. Bonaerense, 25(3), 421-424.
Egea, M. B., & Pereira-Netto, A. B. (2019). Bioactive compound-rich, virtually unknown, edible fruits from the Atlantic Rainforest: changes in antioxidant activity and related bioactive compounds during ripening. European Food Research and Technology, 245(5), 1081-1093. https://doi.org/10.1007/s00217-018-3208-z
Faraoni, A. S., Ramos, A. M., Guedes, D. B., Moacir, M. R., & Pinto, R. (2013). Propriedades reológicas de sucos mistos de manga, goiaba e acerola adicionados de fitoquímicos. Brazilian Journal of Food Technology, 16(1), 21-28. https://doi.org/10.1590/S1981-67232013005000002
Farinelli, D., Portarena, S., da Silva, D. F., Traini, C., da Silva, G. M., da Silva, E. C., da Veiga, J. F., Pollegioni, P., & Villa, F. (2021). Variability of Fruit Quality among 103 Acerola (Malpighia emarginata DC) Phenotypes from the Subtropical Region of Brazil. Agriculture, 11(11), 1078. https://doi.org/10.3390/agriculture11111078
Ferreira, M. A. R., Vilvert, J. C., da Silva, B. O. S., Ferreira, I. C., de França Souza, F., & De Freitas, S. T. (2022). Multivariate selection index of acerola genotypes for fresh consumption based on fruit physicochemical attributes. Euphytica, 218(3), 25. https://doi.org/10.1007/s10681-022-02978-1
França, V. C., & Narain, N. (2003). Caracterização química dos frutos de três matrizes de acerola (Malpighia emarginata DC). Food Science and Technology, 23(2), 157-160. https://doi.org/10.1590/S0101-20612003000200009
Freitas, C. A. S., Maia, G. A., Costa, J. M. C., Figueiredo, R. W., Sousa, P. H. M., & Fernandes, A. G. (2006). Estabilidade dos carotenoides, antocianinas e vitamina C presentes no suco tropical de acerola (Malpighia emarginata DC.) adoçado envasado pelos processos hot-fill e asséptico. Ciência e Agrotecnologia, 30(5), 942-949. https://doi.org/10.1590/S1413-70542006000500018
Groeneveld, I., Kanelli, M., Ariese, F., & van Bommel, M. R. (2022). Parameters that affect the photodegradation of dyes and pigments in solution and on substrate–An overview. Dyes and Pigments, 210, 110999. https://doi.org/10.1016/j.dyepig.2022.110999
Gross, J. (1991). Pigment in Vegetables: Chlorophyll and Carotenoids. Van Nostrand Reinhold.
Instituto Adolfo Lutz (2005). Métodos químicos e físicos para analise de alimentos, 2. Normas Analíticas do Instituto Adolfo Lutz. Instituto Adolfo Lutz.
Kaddumukasa, P. P., Imathiu, S. M., Mathara, J. M., & Nakavuma, J. L. (2017). Influence of physicochemical parameters on storage stability: Microbiological quality of fresh unpasteurized fruit juices. Food Science & Nutrition, 5(6), 1098-1105. https://doi.org/10.1002%2Ffsn3.500
Kuskoski, E. M., Asuero, A. G., Morales, M. T., & Fett, R. (2006). Frutos tropicais silvestres e polpas de frutas congeladas: atividade antioxidante, polifenóis e antocianinas. Ciência Rural, 36(4), 1283-1287. https://doi.org/10.1590/S0103-84782006000400037
Larrauri, J. A., Rupérez, P., & Saura-Calixto, F. (1997). Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. Journal of Agricultural and Food Chemistry, 45(4), 1390-1393. https://doi.org/10.1021/jf960282f
Lima, A. J. B., Corrêa, A. D., Saczk, A. A., Martins, M. P., & Castilho, R. O. (2011). Anthocyanins, pigment stability and antioxidant activity in jabuticaba [Myrciaria cauliflora (Mart.) O. Berg]. Revista Brasileira de Fruticultura, 33(3), 877-887. https://doi.org/10.1590/S0100-29452011000300023
Liu, P., Li, W., Hu, Z., Qin, X., & Liu, G. (2020). Isolation, purification, identification, and stability of anthocyanins from Lycium ruthenicum Murr. LWT, 126, 109334. https://doi.org/10.1016/j.lwt.2020.109334
Maia, G. A., da Silva, L. M. R., do Prado, G. M., Fonseca, A. V. V., de Sousa, P. H. M., & de Figueiredo, R. W. (2019). Development of mixed beverages based on tropical fruits. In Grumezescu, A. M. & Holban, A. M. (eds.). Non-alcoholic beverages (pp. 129-162). Elsevier.
Mattioli, R., Francioso, A., Mosca, L., & Silva, P. (2020). Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules, 25(17), 3809. https://doi.org/10.3390/molecules25173809
Merrill, A., & Watt, B. (1973). Energy value of foods: basis and derivation. United States Department of Agriculture. Agriculture handbook, 74.
Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V., & Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science, 84(4), 407-412. https://doi.org/10.1042/cs0840407
Neuenfeldt, N. H., de Moraes, D. P., de Deus, C., Barcia, M. T., & de Menezes, C. R. (2022). Blueberry phenolic composition and improved stability by microencapsulation. Food and Bioprocess Technology, 15(4), 750-767. https://doi.org/10.1007/s11947-021-02749-1
Newerli-Guz, J., Śmiechowska, M., Drzewiecka, A., & Tylingo, R. (2023). Bioactive Ingredients with Health-Promoting Properties of Strawberry Fruit (Fragaria x ananassa Duchesne). Molecules, 28(6), 2711. https://doi.org/10.3390/molecules28062711
Nishimoto‐Sauceda, D., Romero‐Robles, L. E., & Antunes‐Ricardo, M. (2022). Biopolymer nanoparticles: a strategy to enhance stability, bioavailability, and biological effects of phenolic compounds as functional ingredients. Journal of the Science of Food and Agriculture, 102(1), 41-52. https://doi.org/10.1002/jsfa.11512
Oliveira Filho, J., Braga, A., Oliveira, B., Gomes, F., Moreira, V., Pereira, V., & Egea, M. (2021). The potential of anthocyanins in smart, active, and bioactive eco-friendly polymer-based films: a review. Food Research International, 142, 110202. https://doi.org/10.1016/j.foodres.2021.110202
Quaresma, D. M., Justino, A. B., Sousa, R. M., Munoz, R. A., de Aquino, F. J., Martins, M. M., Goulart, L. R., Pivatto, M., Espindola, F. S., & de Oliveira, A. (2020). Antioxidant compounds from Banisteriopsis argyrophylla leaves as α-amylase, α-glucosidase, lipase, and glycation inhibitors. Bioorganic Chemistry, 105, 104335. https://doi.org/10.1016/j.bioorg.2020.104335
Righetto, A., Netto, F., & Carraro, F. (2005). Chemical composition and antioxidant activity of juices from mature and immature acerola (Malpighia emarginata DC). Food Science and Technology International, 11(4), 315-321. https://doi.org/10.1177/1082013205056785
Rufino, M. S. M., Alves, R. E., de Brito, E. S., Pérez-Jiménez, J., Saura-Calixto, F., & Mancini-Filho, J. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 121(4), 996-1002. https://doi.org/10.1016/j.foodchem.2010.01.037
Sacramento, V. M., Santos, K. T., Rocha, D. F. O., Cabral, E. C., Eberlin, M. N., Mercadante-Simões, M. O., Fonseca, F. S. A., Melo Junior, A. F., Menezes, E. V., & Oliveira, D. A. (2022). Chemical profile and antioxidant activity in Diplopterys pubipetala (Malpighiaceae). Natural Product Research, 36(13), 3450-3454. https://doi.org/10.1080/14786419.2020.1855644
Santos, D., Oliveira Filho, J., Sousa, T., Ribeiro, C., & Egea, M. (2022). Ameliorating effects of metabolic syndrome with the consumption of rich-bioactive compounds fruits from Brazilian Cerrado: a narrative review. Critical Reviews in Food Science and Nutrition, 62(27), 7632-7649. https://doi.org/10.1080/10408398.2021.1916430
Santos, L. G., & Martins, V. G. (2022). Recovery of phenolic compounds from purple onion peel using bio‐based solvents: Thermal degradation kinetics and color stability of anthocyanins. Journal of Food Processing and Preservation, 46(12), e17161. https://doi.org/10.1111/jfpp.17161
Sharma, R. J., Gupta, R. C., Singh, S., Bansal, A. K., & Singh, I. P. (2016). Stability of anthocyanins-and anthocyanidins-enriched extracts, and formulations of fruit pulp of Eugenia jambolana (‘jamun’). Food Chemistry, 190, 808-817. https://doi.org/10.1016/j.foodchem.2015.06.029
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
Slavu, M., Aprodu, I., Milea, Ș. A., Enachi, E., Râpeanu, G., Bahrim, G. E., & Stănciuc, N. (2020). Thermal degradation kinetics of anthocyanins extracted from purple maize flour extract and the effect of heating on selected biological functionality. Foods, 9(11), 1593. https://doi.org/10.3390/foods9111593
Soares, E. C., Oliveira, G. S. F. Maia, G. A., Monteiro, J. C. S., Silva Jr, A., & S Filho, M. d. S. d. (2001). Desidratação da polpa de acerola (Malpighia emarginata DC) pelo processo "foam-mat". Food Science and Technology, 21(2), 164-170. https://doi.org/10.1590/S0101-20612001000200008
Sousa, M. S. B., Vieira, L. M., Silva, M. d. J. M. d., & Lima, A. d. (2011). Nutritional characterization and antioxidant compounds in pulp residues of tropical fruits. Ciência e Agrotecnologia, 35(3), 554-559. https://doi.org/10.1590/S1413-70542011000300017
Souza, M., Mesquita, A., Veríssimo, C., Grosso, C., Converti, A., & Maciel, M. I. (2022). Microencapsulation by spray drying of a functional product with mixed juice of acerola and ciriguela fruits containing three probiotic lactobacilli. Drying Technology, 40(6), 1185-1195. https://doi.org/10.1080/07373937.2020.1862182
Stringheta, P. C. (1991). Identificação da estrutura e estudo da estabilidade das antocianinas extraídas da inflorescência de capim gordura (Mellinis minutiflora, Pal de Beauv) [Publication Number T/UNICAMP St85i]. Universidade Estadual de Campinas.
Subhasree, B., Baskar, R., Keerthana, R. L., Susan, R. L., & Rajasekaran, P. (2009). Evaluation of antioxidant potential in selected green leafy vegetables. Food Chemistry, 115(4), 1213-1220. https://doi.org/10.1016/j.foodchem.2009.01.029
Talcott, S., & Howard, L. (1999). Phenolic autoxidation is responsible for color degradation in processed carrot puree. Journal of Agricultural and Food Chemistry, 47(5), 2109-2115. https://doi.org/10.1021/jf981134n
Uchôa, V. T., Araújo, M. N. T., Castro, R. D. S., Rodrigues, A. C. D. S., & Rêgo, J. F. (2017). Avaliação do teor de vitamina C em polpas de acerola comercializadas em supermecados de Piripiri-PI. Revista Ciência Agrícola, 15(1), 59-68. https://doi.org/10.28998/rca.v15i1.2609
Vieira, L. M., Sousa, M. S. B., Mancini-Filho, J., & Lima, A. (2011). Fenólicos totais e capacidade antioxidante in vitro de polpas de frutos tropicais. Revista Brasileira de Fruticultura, 33(3), 888-897. https://doi.org/10.1590/S0100-29452011005000099
Yamashita, F., Benassi, M. T., Tonzar, A. C., Moriya, S., & Fernandes, J. G. (2003). Produtos de acerola: estudo da estabilidade de vitamina C. Food Science and Technology, 23(1), 92-94. https://doi.org/10.1590/S0101-20612003000100019
Yu, Y., Meng, X., Guo, D., Yang, S., Zhang, G., & Liang, Z. (2020). Grapevine U-box E3 ubiquitin ligase VlPUB38 negatively regulates fruit ripening by facilitating abscisic-aldehyde oxidase degradation. Plant and Cell Physiology, 61(12), 2043-2054. https://doi.org/10.1093/pcp/pcaa118