A review of insecticidal effect of essential oils on stored grain pests
DOI:
https://doi.org/10.5327/fst.106022Palavras-chave:
Essential oils, Secondary metabolites, Inseticide, Insects, Stored GrainsResumo
Grain production grows more every year, and stored grain pests have been a challenge for agriculture. The use of pesticides is the main solution to face this challenge; however, improper and extensive management leads to another difficulty: the resistance acquired by some pests, causing their ineffectiveness. Thus, essential oils and other natural products emerge as an alternative to overcome this situation. In this study, several essential oils with insecticidal/repellent properties were reviewed to evaluate the capacity to become an important method for protecting stored grains against the most recurrent pests. This is a literature review that analyzed articles in scientific database platforms, using different combinations of the keywords “Essential oils”, “Insecticides”, “Stored grains”, “Repellents” and “Insects”. Among the essential oils studied, the most outstanding were the essential oils of: Artemisia argyi and Mentha haplocalyx against Lasioderma serricorne; Artemisia rupestris and Ligusticum pteridophyllum against Liposcelis bostrychophila; and Artemisia anethoides, Elshotzia ciliata, and Amomum maximum against Tribolium castaneum. Along with some essential oils, their main components and insecticidal/repellent capacity when isolated were also evaluated. The results were promising, although mechanisms of action have not yet been elucidated. Investing in research for alternative pest control can contribute to sustainable agriculture.
Downloads
Referências
Ahmad, R., Hassan, S., Ahmad, S., Nighat, S., Devi, Y. K., Javeed, K., Usmani, S., Ansari, M. J., Erturk, S., & Hussain, M. A. e B. (2021). Stored Grain Pests and Current Advances for Their Management. In M. Ahiduzzaman (Ed.), Postharvest Technology - Recent Advances, New Perspectives and Applications. IntechOpen. https://doi.org/10.5772/intechopen.101503
Ayvaz, A., Sagdic, O., Karaborklu, S., & Ozturk, I. (2010). Insecticidal activity of the essential oils from different plants against three stored-product insects. Journal of Insect Science, 10(1), 1–13. https://doi.org/10.1673/031.010.2101
Balachandra, B. A. H. E., Pathirathna, P. U., & Paranagama, P. A. (2012). Control of stored grain pest, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) using the essential oil isolated from Plectranthus zeylanicus. Natural Product Research, 26(23), 2219–2222. https://doi.org/10.1080/14786419.2011.643883
Chaieb, I., Hamouda, A. Ben, Tayeb, W., Zarrad, K., Bouslema, T., & Laarif, A. (2018). The Tunisian Artemisia essential oil for reducing contamination of stored cereals by Tribolium castaneum. Food Technology and Biotechnology, 56(2), 247–256. https://doi.org/10.17113/ftb.56.02.18.5414
Chaubey, M. K. (2008). Fumigant toxicity of essential oils from some common spices against pulse beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). Journal of Oleo Science, 57(3), 171–179. https://doi.org/10.5650/jos.57.171
FAO. (2020). Countries by commodity. FAOSTAT. https://www.fao.org/faostat/en/#rankings/countries_by_commodity
FAO. (2022). General and food consumer price indices inflation rates: March 2022 update (Issue March).
Feng, Y.-X., Wang, Y., Chen, Z.-Y., Guo, S.-S., You, C.-X., & Du, S.-S. (2019). Efficacy of bornyl acetate and camphene from Valeriana officinalis essential oil against two storage insects. Environmental Science and Pollution Research International, 26(16), 16157–16165. https://doi.org/10.1007/s11356-019-05035-y
Feng, Y.-X., Wang, Y., Geng, Z.-F., Zhang, D., Almaz, B., & Du, S.-S. (2020). Contact toxicity and repellent efficacy of Valerianaceae spp. to three stored-product insects and synergistic interactions between two major compounds camphene and bornyl acetate. Ecotoxicology and Environmental Safety, 190, 110106. https://doi.org/10.1016/j.ecoenv.2019.110106
Fields, P. G., & White, N. D. G. (2002). Alternatives to Methyl Bromide Treatments for Stored-Product and Quarantine Insects. Annual Review of Entomology, 47(1), 331–359. https://doi.org/10.1146/annurev.ento.47.091201.145217
Fogang, H. P. D., Womeni, H. M., Piombo, G., Barouh, N., & Tapondjou, L. A. (2012). Bioefficacy of Essential and Vegetable Oils of Zanthoxylum xanthoxyloides Seeds against Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). Journal of Food Protection, 75(3), 547–555. https://doi.org/10.4315/0362-028X.JFP-11-136
Guo, S. S., You, C. X., Liang, J. Y., Zhang, W. J., Yang, K., Geng, Z. F., Wang, C. F., Du, S. S., & Lei, N. (2015). Essential oil of Amomum maximum Roxb. and its bioactivities against two stored-product insects. Journal of Oleo Science, 64(12), 1307–1314. https://doi.org/10.5650/jos.ess15160
Guo, S., Zhang, W., Liang, J., You, C., Geng, Z., Wang, C., & Du, S. (2016). Contact and Repellent Activities of the Essential Oil from Juniperus formosana against Two Stored Product Insects. Molecules, 21(4). https://doi.org/10.3390/molecules21040504
Hashem, A. S., Awadalla, S. S., Zayed, G. M., Maggi, F., & Benelli, G. (2018). Pimpinella anisum essential oil nanoemulsions against Tribolium castaneum—insecticidal activity and mode of action. Environmental Science and Pollution Research, 25(19), 18802–18812. https://doi.org/10.1007/s11356-018-2068-1
Isman, M. B., Tak, J-H. Commercialization of insecticides based on plant essential oils: Past, present, and future. In: Green Pesticides Handbook. CRC Press, 2017. p. 27-40.
Khani, A., & Rahdari, T. (2012). Chemical Composition and Insecticidal Activity of Essential Oil from Coriandrum sativum Seeds against Tribolium confusum and Callosobruchus maculatus . ISRN Pharmaceutics, 2012, 1–5. https://doi.org/10.5402/2012/263517
Lazarević, J., Jevremović, S., Kostić, I., Kostić, M., Vuleta, A., Jovanović, S. M., & Jovanović, D. Š. (2020). Toxic, oviposition deterrent and oxidative stress effects of thymus vulgaris essential oil against acanthoscelides obtectus. Insects, 11(9), 1–19. https://doi.org/10.3390/insects11090563
Li, H. Y., Liu, X. C., Chen, X. B., Liu, Q. Z., & Liu, Z. L. (2015). Chemical Composition and Insecticidal Activities of the Essential Oil of Clinopodium chinense (Benth.) Kuntze Aerial Parts against Liposcelis bostrychophila Badonnel. Journal of Food Protection, 78(10), 1870–1874. https://doi.org/10.4315/0362-028X.JFP-15-089
Li, Y., Yan, S. S., Wang, J. J., Li, L. Y., Zhang, J., Wang, K., & Liang, J. Y. (2018). Insecticidal activities and chemical composition of the essential oils of ajania nitida and ajania nematoloba from China. Journal of Oleo Science, 67(12), 1571–1577. https://doi.org/10.5650/jos.ess18102
Liang, J. Y., Wang, W. T., Zheng, Y. F., Zhang, D., Wang, J. L., Guo, S. S., Zhang, W. J., Du, S. S., & Zhang, J. (2017). Bioactivities and chemical constituents of essential oil extracted from Artemisia anethoides against two stored product insects. Journal of Oleo Science, 66(1), 71–76. https://doi.org/10.5650/jos.ess16080
Liang, J. Y., Xu, J., Yang, Y. Y., Shao, Y. Z., Zhou, F., & Wang, J. L. (2020). Toxicity and synergistic effect of Elsholtzia ciliata essential oil and its main components against the adult and larval stages of Tribolium castaneum. Foods, 9(3). https://doi.org/10.3390/foods9030345
Liu, P., Liu, X. C., Dong, H. W., Liu, Z. L., Du, S. S., & Deng, Z. W. (2012). Chemical composition and insecticidal activity of the essential oil of illicium pachyphyllum fruits against two grain storage insects. Molecules, 17(12), 14870–14881. https://doi.org/10.3390/molecules171214870
Liu, X. C., Li, Y. P., Li, H. Q., Deng, Z. W., Zhou, L., Liu, Z. L., & Du, S. S. (2013). Identification of repellent and insecticidal constituents of the essential oil of Artemisia rupestris L. aerial parts against liposcelis bostrychophila Badonnel. Molecules, 18(9), 10733–10746. https://doi.org/10.3390/molecules180910733
Liu, X. C., Liang, Y., Shi, W. P., Liu, Q. Z., Zhou, L., & Liu, Z. L. (2014). Repellent and insecticidal effects of the essential oil of Kaempferia galanga rhizomes to Liposcelis bostrychophila (Psocoptera: Liposcelidae). Journal of Economic Entomology, 107(4), 1706–1712. https://doi.org/10.1603/ec13491
Liu, X. C., & Liu, Z. L. (2015). Analysis of the essential oil of Illicium henryi Diels root bark and its insecticidal activity against Liposcelis bostrychophila Badonnel. Journal of Food Protection, 78(4), 772–777. https://doi.org/10.4315/0362-028X.JFP-14-407
Liu, Z. L., Zhao, N. N., Liu, C. M., Zhou, L., & Du, S. S. (2012). Identification of insecticidal constituents of the essential oil of curcuma wenyujin rhizomes active against liposcelis bostrychophila badonnel. Molecules, 17(10), 12049–12060. https://doi.org/10.3390/molecules171012049
Lü, J. (2017). Effect of citrus reticulata blanco Essential oil on Cryptolestes ferrugineus (Stephens) adults. Journal of Food Protection, 80(12), 2090–2093. https://doi.org/10.4315/0362-028X.JFP-17-225
Lu, X. X., Hu, N. N., Du, Y. S., Almaz, B., Zhang, X., & Du, S. S. (2021). Chemical compositions and repellent activity of Clerodendrum bungei Steud. essential oil against three stored product insects. DARU, Journal of Pharmaceutical Sciences, 29(2), 469–475. https://doi.org/10.1007/s40199-021-00398-5
Luo, C., Li, D. L., Wang, Y., Guo, S. S., & Du, S. S. (2019). Bioactivities of 3-butylidenephthalide and n-butylbenzene from the essential oil of ligusticum jeholense against stored-product insects. Journal of Oleo Science, 68(9), 931–937. https://doi.org/10.5650/jos.ess19080
Magalhães, C. R. I., Brito, S. S. S., Magalhães, T. A., Ferraz, M. S. S., & Oliveira, C. R. F. (2014). Evaluation of the Effect of Essential Oils in Grain of Corn (Zea mays L.). Enciclopedia Biosfera, 10(19), 338–349.
Moura, E.D.S., Faroni, L.R.D., Heleno, F.F., Rodrigues, A.A.Z. (2021). Toxicological Stability of Ocimum basilicum Essential Oil and Its Major Components in the Control of Sitophilus zeamais. Molecules, 26, 6483.
Mustapha, M. Ben, Zardi-Bergaoui, A., Chaieb, I., Flamini, G., Ascrizzi, R., & Jannet, H. Ben. (2020). Chemical Composition and Insecticidal Activity of Crithmum Maritimum L. Essential Oil against Stored-Product Beetle Tribolium Castaneum. Chemistry & Biodiversity, 17(3), e1900552. https://doi.org/https://doi.org/10.1002/cbdv.201900552
Narayanankutty, A., Sasidharan, A., Job, J. T., Rajagopal, R., Alfarhan, A., Kim, Y. O., & Kim, H.-J. (2021). Mango ginger (Curcuma amada Roxb.) rhizome essential oils as source of environmental friendly biocides: Comparison of the chemical composition, antibacterial, insecticidal and larvicidal properties of essential oils extracted by different methods. Environmental Research, 202, 111718. https://doi.org/10.1016/j.envres.2021.111718
Oyedeji, A. O., Okunowo, W. O., Osuntoki, A. A., Olabode, T. B., & Ayo-folorunso, F. (2020). Insecticidal and biochemical activity of essential oil from Citrus sinensis peel and constituents on Callosobrunchus maculatus and Sitophilus zeamais. Pesticide Biochemistry and Physiology, 168, 104643. https://doi.org/10.1016/j.pestbp.2020.104643
Pang, X., Feng, Y.-X., Qi, X.-J., Wang, Y., Almaz, B., Xi, C., & Du, S.-S. (2020). Toxicity and repellent activity of essential oil from Mentha piperita Linn. leaves and its major monoterpenoids against three stored product insects. Environmental Science and Pollution Research International, 27(7), 7618–7627. https://doi.org/10.1007/s11356-019-07081-y
Pavela, R., Benelli, G. (2016). Essential oils as eco-friendly biopesticides? Challenges and constraints. Trends in plant science, v. 21, n. 12, p. 1000-1007.
Plata-Rueda, A., Zanuncio, J.C., Serrão, J.E., Martínez, L.C. (2021) Origanum vulgare Essential Oil against Tenebrio molitor (Coleoptera: Tenebrionidae): Composition, Insecticidal Activity, and Behavioral Response. Plants, 10, 2513. https://doi.org/10.3390/plants10112513
Qi, X.-J., Pang, X., Cao, J.-Q., & Du, S.-S. (2020). Comparative analysis on bioactivity against three stored insects of Ligusticum pteridophyllum Franch. rhizomes essential oil and supercritical fluid (SFE-CO(2)) extract. Environmental Science and Pollution Research International, 27(13), 15584–15591. https://doi.org/10.1007/s11356-020-08043-5
Rajkumar, V., Gunasekaran, C., Christy, I. K., Dharmaraj, J., Chinnaraj, P., & Paul, C. A. (2019). Toxicity, antifeedant and biochemical efficacy of Mentha piperita L. essential oil and their major constituents against stored grain pest. Pesticide Biochemistry and Physiology, 156(February), 138–144. https://doi.org/10.1016/j.pestbp.2019.02.016
Rajkumar, V., Gunasekaran, C., Dharmaraj, J., Chinnaraj, P., Paul, C. A., & Kanithachristy, I. (2020). Structural characterization of chitosan nanoparticle loaded with Piper nigrum essential oil for biological efficacy against the stored grain pest control. Pesticide Biochemistry and Physiology, 166(January), 104566. https://doi.org/10.1016/j.pestbp.2020.104566
Rajkumar, V., Gunasekaran, C., Paul, C. A., & Dharmaraj, J. (2020). Development of encapsulated peppermint essential oil in chitosan nanoparticles: characterization and biological efficacy against stored-grain pest control. Pesticide Biochemistry and Physiology, 170(August), 104679. https://doi.org/10.1016/j.pestbp.2020.104679
Rodríguez-González, Á., Álvarez-García, S., González-López, Ó., Silva, F. da, & Casquero, P. A. (2019). Insecticidal Properties of Ocimum basilicum and Cymbopogon winterianus against Acanthoscelides obtectus, Insect Pest of the Common Bean (Phaseolus vulgaris, L.). Insects, 10, 1–14. https://doi.org/10.3390/insects10050151
Tripathi, A. K., Prajapati, V., Aggarwal, K. K., Khanuja, S. P., & Kumar, S. (2000). Repellency and toxicity of oil from Artemisia annua to certain stored-product beetles. Journal of Economic Entomology, 93(1), 43–47. https://doi.org/10.1603/0022-0493-93.1.43
USDA. (2022). Agricultural Markets in Russia and Ukraine. Newsroom. Trending Topics. https://www.ers.usda.gov/newsroom/trending-topics/agricultural-markets-in-russia-and-ukraine/
Wang, Y., Zhang, L. T., Feng, Y. X., Guo, S. S., Pang, X., Zhang, D., Geng, Z. F., & Du, S. S. (2019). Insecticidal and repellent efficacy against stored-product insects of oxygenated monoterpenes and 2-dodecanone of the essential oil from Zanthoxylum planispinum var. dintanensis. Environmental Science and Pollution Research, 26(24), 24988–24997. https://doi.org/10.1007/s11356-019-05765-z
Wu, Y., Zhang, W. J., Huang, D. Y., Wang, Y., Wei, J. Y., Li, Z. H., Sun, J. S., Bai, J. F., Tian, Z. F., Wang, P. J., & Du, S. S. (2015). Chemical compositions and insecticidal activities of Alpinia kwangsiensis essential oil against Lasioderma serricorne. Molecules, 20(12), 21939–21945. https://doi.org/10.3390/molecules201219818
Ya-Ali, P., Yarahmadi, F., & Mehrnia, M. A. (2020). Efficacies of Two Nano-Formulations of Tasmanian Blue Gum Essential Oil to Control Callosobruchus maculatus. Journal of Economic Entomology, 113(3), 1555–1562. https://doi.org/10.1093/jee/toaa069
Zhang, W. J., Yang, K., You, C. X., Wang, C. F., Geng, Z. F., Su, Y., Wang, Y., Du, S. S., & Deng, Z. W. (2015). Contact toxicity and repellency of the essential oil from Mentha haplocalyx Briq. against Lasioderma serricorne. Chemistry and Biodiversity, 12(5), 832–839. https://doi.org/10.1002/cbdv.201400245
Zhang, W. J., You, C. X., Yang, K., Chen, R., Wang, Y., Wu, Y., Geng, Z. F., Chen, H. P., Jiang, H. Y., Su, Y., Lei, N., Ma, P., Du, S. S., & Deng, Z. W. (2014). Bioactivity of essential oil of Artemisia argyi Lévl. et Van. and its main compounds against Lasioderma serricorne. Journal of Oleo Science, 63(8), 829–837. https://doi.org/10.5650/jos.ess14057
Zhang, W. J., You, C. X., Yang, K., Wang, Y., Su, Y., Geng, Z. F., Du, S. S., Wang, C. F., Deng, Z. W., & Wang, Y. Y. (2015). Bioactivity and chemical constituents of the essential oil from Dendranthema indicum (L.) des moul. against two stored insects. Journal of Oleo Science, 64(5), 553–560. https://doi.org/10.5650/jos.ess14231