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Abstract
Modeling moisture content variation under variable hot air dryers is challenging. In this study, mathematical models and 
artificial neural network (ANN) were investigated for modeling of instant “Cẩm” brown rice drying process. The experiments 
were done in four levels of hot air temperature (55, 60, 65, and 70 °C). The results demonstrated that among eight mathematical 
models, the diffusion approach could give the best prediction of moisture ratio during the drying process with the highest 
R-square and lowest mean square error. Besides, the ANN model with 10 hidden layers also could provide the best-fit model 
with the same criteria as the mathematical model. Compared with the ANN model, both can give a highly accurate prediction. 
However, the ANN model could be more beneficial in the up-scale process.

Keywords: brown rice; artificial neuron network; drying; modeling.

Practical Application: Using thin-layered mathematical model and artificial neural network (ANN) can predict the moisture 
content of instant brown rice during the drying process. In an industrial investigation, a robust ANN model for predicting the 
moisture content helps to better predict and control hot air dryers, which could help to easier to up-scale process.
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1 INTRODUCTION
One of the most significant cereal crops and staple foods 

is rice (Oryza sativa L.). According to the degree of trans-
formation, rice can also be divided into three types: paddy, 
brown rice, and white rice. Brown rice, also known as husked 
rice, cargo rice, or loonzain rice, is rice that has merely been 
husked, leaving the remaining rice germ and grain coat intact. 
According to the type and species of rice, brown rice might 
be red, purple, dark brown, or even light brown (Waewkum 
& Singthong, 2021). Recent research has been conducted to 
compare the nutritional value of whole brown rice grain and 
colored rice grain to white rice and to see whether there are any 
potential health benefits (Ngo et al., 2022). In general, brown 
rice has a higher nutrient content than white rice, including 
higher levels of protein, fat, vitamins, and minerals. Moreover, 
a higher amount of bioactive compounds has been found in 
entire grains of brown rice (Saleh et al., 2019). Vietnam is one 
of the major rice-producing countries. Besides, “Cẩm” brown 
rice is one of the local rice in the southern part of Vietnam, 
which contains high antioxidant compounds and nutrients (Le 
& Nguyen, 2019; Loan et al., 2022). It could also have the po-
tential for producing instant rice to meet the needs of modern 
life. In general, instant rice could be produced by various meth-
ods. One of the simple methods is cooking and then drying to 
a certain moisture content (Loan et al., 2022). Drying is one 
of the key steps, which affected the reconstitution of instant 
rice. Therefore, controlling the drying process as well as the 
moisture content of cooked rice during drying is important. 

Generally, the principle of the drying process is based on the 
removal of water from the material using evaporation for a 
longer shelf life and minimizing packaging requirements. 
Due to the simultaneous heat, mass, and momentum transfer 
processes involved in drying, it is a complicated process. The 
complexity is heightened if drying conditions change at any 
point while the process is underway. Determining the impact 
of process factors, optimizing the drying process, integrating 
energy, and controlling the process all require appropriate 
models (Kumar et  al., 2014). Throughout the past several 
decades, numerous research investigations have focused on 
the creation of mathematical and numerical models to char-
acterize the drying processes (Hernandez-Perez et al., 2004; 
Thuy et al., 2020; Thuy et al., 2022a; Thuy et al., 2022b). Some 
of the assumptions used in mathematical models are easy to 
build (Kumar et al., 2014), whereas numerical models demand 
an in-depth understanding of the workings of the process, the 
estimation of several experimental parameters, and the use of 
sophisticated calculation techniques. The black-box modeling 
approach can be examined to get beyond these modeling 
challenges and effectively anticipate the moisture content with 
drying conditions. One black-box modeling approach that has 
advantages over other traditional modeling techniques is the 
artificial neural network (ANN) (Hernández, 2009).

A simple definition of nonlinear and complicated sys-
tems, quick computation, and adaptable performance are the 
key benefits of ANN (Bai et al., 2018). Moreover, Aghbashlo 
et al. (2015) provided an excellent evaluation of Farkas (2013) 
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through a discussion of ANN’s modeling capabilities for the 
drying process. The literature review demonstrated that the 
application and comparison between the thin-layered model 
and the ANN model of drying process of instant rice provided 
limited information. Therefore, in this study, the drying kinetic 
study of instant “Cẩm” brown rice was investigated, and robust 
static and dynamic ANN models for predicting the moisture 
content were developed and compared.

2 MATERIALS AND METHODS

2.1 Materials

“Cẩm” brown rice was harvested by the local farmer in Tien 
Giang Province (Vietnam), then de-husked by a local machine. 
The protein, lipid, carbohydrate, and moisture content of raw 
materials were 9.11, 3.09, 64.98, and 12.04%, respectively, from 
the previous study by Loan et al. (2022). 

2.2 Drying experiment

The rice (200 g) was washed and then 400 mL of water was 
added as the good conditions for cooking (Loan et al., 2022). 
An electric cooker (KS-IH191V-GL, Sharp, Korea) was used in 
this study. The initial moisture content of cooked brown rice was 
56.2% (on a wet basis). The sample was spread on the stainless 
steel tray with a thickness of 1 cm. The sample was dried at 55, 
60, 65, and 70 °C until the attainment of equilibrium moisture 
content. The change in weight of the sample during the dry-
ing process was recorded (30-min interval) for calculating the 
moisture content at different time points. Three replicates were 
operated for each drying condition, and the average value of 
moisture content was used.

2.3 Mathematical modeling

The moisture ratio (MR) value was calculated as Equation 
1 before fitting model.

MR =  𝑀𝑀𝑡𝑡 − 𝑀𝑀𝑒𝑒
𝑀𝑀𝑖𝑖 − 𝑀𝑀𝑒𝑒

ln ( 8
𝜋𝜋2) − (𝜋𝜋2𝑡𝑡𝐷𝐷eff

4𝐿𝐿2 )

𝐷𝐷eff =  𝐷𝐷𝑜𝑜 exp (−𝐸𝐸𝑎𝑎
𝑅𝑅𝑅𝑅 )

𝐵𝐵𝐵𝐵 =  24.848
𝐷𝐷𝐷𝐷0.375

𝐷𝐷𝐷𝐷 = 𝑣𝑣
𝑘𝑘𝑘𝑘

𝐵𝐵𝐵𝐵 =  ℎ𝑚𝑚𝐿𝐿
𝐷𝐷eff

� (1)

Where:

Mt: the moisture content at time t (% dry basis);

Me: the equilibrium moisture content (% dry basis); 

Mi: the initial moisture content (% dry basis).

Eight thin-layered semi-empirical models were selected to 
fit the actual MR data, as shown in Table 1. Regression analysis 
was conducted to find the drying constant (a, b, c, k, k0, or n) 
of each model using the Stagraphics Centurion XV.I program. 
The highest coefficient of determination (R2) and lowest sum 
of squared errors (SSE) and mean square error (MSE) values 
were used to select the most suitable equation that expresses 
the drying kinetics of instant brown rice. 

2.4 Artificial neural network 

A parallel and nonlinear interconnection characterizes 
ANNs, which are multi-parametric empirical models. When it 
comes to adapting to new information and effectively identifying 
patterns in ambiguous and imprecise data, an ANN’s function 
is comparable to that of the human brain. An input layer, a 
hidden layer or layers, and an output layer make up the ANN 
infrastructure. A collection of neurons, or “nodes,” make up 
each layer. According to the proportional relevance of a given 
signal, the internal connections between these nodes, known 
as “weights,” determine which nodes to trigger. A mathematical 
transfer function controls the data processing in the nodes. 
Based on the difference between experimental and predicted 
results, ANN corrects the network by administering modifica-
tions to the internal connections. This process of trial and error 
continues till the network predictions are in good agreement 
with the target data and with a reasonable level of accuracy. 
The trained model is subjected to testing and validation, and 
the predicted data are acquired through model simulations.

In this study, a multi-layered feed-forward back propagation 
model was used. Drying time and temperature were provided to 
the model as input signals. Moisture ratio and moisture content 
were obtained as model outputs. For lower model complexity, 
the number of hidden layers (HLs) was confined to 1. Two dif-
ferent transfer functions (TANSIGMOID and LOGSIGMOID) 
were used for the HL, and their relative performance was an-
alyzed. PURELIN was used as the transfer function for the 
output layer, as a sigmoidal transfer function in the output layer 
can degenerate the network (Dorofki et al., 2012). The model 
was trained in MATLAB v.2021a using Levenberg-Marquardt 
(LM) training functions. Model training was done using 70% 
of the data. Testing and validation were carried out using the 
remaining 30% of the data set divided equally between the for-
mer and latter. The number of iterations and validation checks 
was limited to 1,000 to decrease the processing time. An ANN 
infrastructure (Figure 1) with the lowest MSE, highest correla-
tion coefficient (R2), and lowest complexity was selected.

Table 1. Thin-layered models applied in mathematical modeling stu-
dy of instant brown rice.
No. Model name Equation Reference
1 Newton MR = 𝑒𝑒−𝑘𝑘𝑘𝑘

MR = 𝑎𝑎 𝑒𝑒−𝑘𝑘𝑘𝑘

MR = 𝑒𝑒−𝑘𝑘𝑡𝑡𝑛𝑛

MR = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 + 𝑐𝑐

MR = 1 −  𝑡𝑡
𝑎𝑎 + 𝑏𝑏𝑏𝑏

MR = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 +  𝑏𝑏𝑒𝑒−𝑘𝑘𝑜𝑜𝑡𝑡

MR = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 + (1 − 𝑎𝑎)𝑒𝑒−𝑘𝑘𝑘𝑘𝑘𝑘

MR = 1 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑡𝑡2

(Lewis, 1921)

2 Henderson 
and Pabis

MR = 𝑒𝑒−𝑘𝑘𝑘𝑘

MR = 𝑎𝑎 𝑒𝑒−𝑘𝑘𝑘𝑘

MR = 𝑒𝑒−𝑘𝑘𝑡𝑡𝑛𝑛

MR = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 + 𝑐𝑐

MR = 1 −  𝑡𝑡
𝑎𝑎 + 𝑏𝑏𝑏𝑏

MR = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 +  𝑏𝑏𝑒𝑒−𝑘𝑘𝑜𝑜𝑡𝑡

MR = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 + (1 − 𝑎𝑎)𝑒𝑒−𝑘𝑘𝑘𝑘𝑘𝑘

MR = 1 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑡𝑡2

(Henderson 
& Pabis, 

1961)

3 Page

MR = 𝑒𝑒−𝑘𝑘𝑘𝑘

MR = 𝑎𝑎 𝑒𝑒−𝑘𝑘𝑘𝑘

MR = 𝑒𝑒−𝑘𝑘𝑡𝑡𝑛𝑛

MR = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 + 𝑐𝑐

MR = 1 −  𝑡𝑡
𝑎𝑎 + 𝑏𝑏𝑏𝑏

MR = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 +  𝑏𝑏𝑒𝑒−𝑘𝑘𝑜𝑜𝑡𝑡

MR = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 + (1 − 𝑎𝑎)𝑒𝑒−𝑘𝑘𝑘𝑘𝑘𝑘

MR = 1 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑡𝑡2

(Page, 1949)

4 Logarithmic 
model

MR = 𝑒𝑒−𝑘𝑘𝑘𝑘

MR = 𝑎𝑎 𝑒𝑒−𝑘𝑘𝑘𝑘

MR = 𝑒𝑒−𝑘𝑘𝑡𝑡𝑛𝑛

MR = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 + 𝑐𝑐

MR = 1 −  𝑡𝑡
𝑎𝑎 + 𝑏𝑏𝑏𝑏

MR = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 +  𝑏𝑏𝑒𝑒−𝑘𝑘𝑜𝑜𝑡𝑡

MR = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 + (1 − 𝑎𝑎)𝑒𝑒−𝑘𝑘𝑘𝑘𝑘𝑘

MR = 1 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑡𝑡2

(Onwude 
et al., 2016)

5 Peleg model

MR = 𝑒𝑒−𝑘𝑘𝑘𝑘

MR = 𝑎𝑎 𝑒𝑒−𝑘𝑘𝑘𝑘

MR = 𝑒𝑒−𝑘𝑘𝑡𝑡𝑛𝑛

MR = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 + 𝑐𝑐

MR = 1 −  𝑡𝑡
𝑎𝑎 + 𝑏𝑏𝑏𝑏

MR = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 +  𝑏𝑏𝑒𝑒−𝑘𝑘𝑜𝑜𝑡𝑡

MR = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 + (1 − 𝑎𝑎)𝑒𝑒−𝑘𝑘𝑘𝑘𝑘𝑘

MR = 1 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑡𝑡2

(Onwude 
et al., 2016)

6 Two-term

MR = 𝑒𝑒−𝑘𝑘𝑘𝑘

MR = 𝑎𝑎 𝑒𝑒−𝑘𝑘𝑘𝑘

MR = 𝑒𝑒−𝑘𝑘𝑡𝑡𝑛𝑛

MR = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 + 𝑐𝑐

MR = 1 −  𝑡𝑡
𝑎𝑎 + 𝑏𝑏𝑏𝑏

MR = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 +  𝑏𝑏𝑒𝑒−𝑘𝑘𝑜𝑜𝑡𝑡

MR = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 + (1 − 𝑎𝑎)𝑒𝑒−𝑘𝑘𝑘𝑘𝑘𝑘

MR = 1 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑡𝑡2

(Onwude 
et al., 2016)

7 Diffusion 
approach

MR = 𝑒𝑒−𝑘𝑘𝑘𝑘

MR = 𝑎𝑎 𝑒𝑒−𝑘𝑘𝑘𝑘

MR = 𝑒𝑒−𝑘𝑘𝑡𝑡𝑛𝑛

MR = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 + 𝑐𝑐

MR = 1 −  𝑡𝑡
𝑎𝑎 + 𝑏𝑏𝑏𝑏

MR = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 +  𝑏𝑏𝑒𝑒−𝑘𝑘𝑜𝑜𝑡𝑡

MR = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 + (1 − 𝑎𝑎)𝑒𝑒−𝑘𝑘𝑘𝑘𝑘𝑘

MR = 1 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑡𝑡2

(Kassem, 
1998)

8 Wang and 
Smith

MR = 𝑒𝑒−𝑘𝑘𝑘𝑘

MR = 𝑎𝑎 𝑒𝑒−𝑘𝑘𝑘𝑘

MR = 𝑒𝑒−𝑘𝑘𝑡𝑡𝑛𝑛

MR = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 + 𝑐𝑐

MR = 1 −  𝑡𝑡
𝑎𝑎 + 𝑏𝑏𝑏𝑏

MR = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 +  𝑏𝑏𝑒𝑒−𝑘𝑘𝑜𝑜𝑡𝑡

MR = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 + (1 − 𝑎𝑎)𝑒𝑒−𝑘𝑘𝑘𝑘𝑘𝑘

MR = 1 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑡𝑡2 (Wang & 
Singh, 1978)
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2.5 Drying behavior

The effective diffusivity (Deff) was calculated using the sim-
plified form of Fick’s diffusion equation (Equation 2) (Demiray 
& Tulek, 2017).

ln(MR) = 

MR =  𝑀𝑀𝑡𝑡 − 𝑀𝑀𝑒𝑒
𝑀𝑀𝑖𝑖 − 𝑀𝑀𝑒𝑒

ln ( 8
𝜋𝜋2) − (𝜋𝜋2𝑡𝑡𝐷𝐷eff

4𝐿𝐿2 )

𝐷𝐷eff =  𝐷𝐷𝑜𝑜 exp (−𝐸𝐸𝑎𝑎
𝑅𝑅𝑅𝑅 )

𝐵𝐵𝐵𝐵 =  24.848
𝐷𝐷𝐷𝐷0.375

𝐷𝐷𝐷𝐷 = 𝑣𝑣
𝑘𝑘𝑘𝑘

𝐵𝐵𝐵𝐵 =  ℎ𝑚𝑚𝐿𝐿
𝐷𝐷eff

� (2)

where:

Deff: the effective moisture diffusivity (m2/s); 

t: the drying time (min); 

L: the thickness (m). 

The diffusivity values were obtained from the slope of the plot 
of ln(MR) versus time (t). The temperature dependence of mois-
ture diffusivity was described by Arrhenius equation (Equation 
3). Activation energy (Ea, kJ/mol) values were obtained from the 
plot of ln(Deff) versus the reciprocal of absolute temperature (T, K).

MR =  𝑀𝑀𝑡𝑡 − 𝑀𝑀𝑒𝑒
𝑀𝑀𝑖𝑖 − 𝑀𝑀𝑒𝑒

ln ( 8
𝜋𝜋2) − (𝜋𝜋2𝑡𝑡𝐷𝐷eff

4𝐿𝐿2 )

𝐷𝐷eff =  𝐷𝐷𝑜𝑜 exp (−𝐸𝐸𝑎𝑎
𝑅𝑅𝑅𝑅 )

𝐵𝐵𝐵𝐵 =  24.848
𝐷𝐷𝐷𝐷0.375

𝐷𝐷𝐷𝐷 = 𝑣𝑣
𝑘𝑘𝑘𝑘

𝐵𝐵𝐵𝐵 =  ℎ𝑚𝑚𝐿𝐿
𝐷𝐷eff

� (3)

Where:

Do: the Arrhenius factor; 

Ea: the activation energy (kJ/mol); 

R: the universal gas constant (8.314 kJ/mol.K); 

T: the drying temperature (K).

2.6 Mass transfer parameters

The determination of mass transfer properties, Biot number 
(Bi), and convective mass transfer coefficient (hm) was done us-
ing Equations 4–6, as described by Dincer and Hussain (2002). 
Biot number is a dimensionless parameter that indicates the 
resistance to moisture diffusion within the product (Toğrul & 
Toğrul, 2007). Bi is affected by both product and drying medium 
properties and can be expressed as Equation 4. 

MR =  𝑀𝑀𝑡𝑡 − 𝑀𝑀𝑒𝑒
𝑀𝑀𝑖𝑖 − 𝑀𝑀𝑒𝑒

ln ( 8
𝜋𝜋2) − (𝜋𝜋2𝑡𝑡𝐷𝐷eff

4𝐿𝐿2 )

𝐷𝐷eff =  𝐷𝐷𝑜𝑜 exp (−𝐸𝐸𝑎𝑎
𝑅𝑅𝑅𝑅 )

𝐵𝐵𝐵𝐵 =  24.848
𝐷𝐷𝐷𝐷0.375

𝐷𝐷𝐷𝐷 = 𝑣𝑣
𝑘𝑘𝑘𝑘

𝐵𝐵𝐵𝐵 =  ℎ𝑚𝑚𝐿𝐿
𝐷𝐷eff

� (4)

Dincer number (Di) provides the relationship between flow 
velocity of the drying fluid and drying coefficient of the product 
(Akpinar & Dincer, 2005). Di was calculated using Equation 5.

MR =  𝑀𝑀𝑡𝑡 − 𝑀𝑀𝑒𝑒
𝑀𝑀𝑖𝑖 − 𝑀𝑀𝑒𝑒

ln ( 8
𝜋𝜋2) − (𝜋𝜋2𝑡𝑡𝐷𝐷eff

4𝐿𝐿2 )

𝐷𝐷eff =  𝐷𝐷𝑜𝑜 exp (−𝐸𝐸𝑎𝑎
𝑅𝑅𝑅𝑅 )

𝐵𝐵𝐵𝐵 =  24.848
𝐷𝐷𝐷𝐷0.375

𝐷𝐷𝐷𝐷 = 𝑣𝑣
𝑘𝑘𝑘𝑘

𝐵𝐵𝐵𝐵 =  ℎ𝑚𝑚𝐿𝐿
𝐷𝐷eff

� (5)

Furthermore, the convective mass transfer coefficient, hm 
(m/s), was calculated using Equation 6. 

MR =  𝑀𝑀𝑡𝑡 − 𝑀𝑀𝑒𝑒
𝑀𝑀𝑖𝑖 − 𝑀𝑀𝑒𝑒

ln ( 8
𝜋𝜋2) − (𝜋𝜋2𝑡𝑡𝐷𝐷eff

4𝐿𝐿2 )

𝐷𝐷eff =  𝐷𝐷𝑜𝑜 exp (−𝐸𝐸𝑎𝑎
𝑅𝑅𝑅𝑅 )

𝐵𝐵𝐵𝐵 =  24.848
𝐷𝐷𝐷𝐷0.375

𝐷𝐷𝐷𝐷 = 𝑣𝑣
𝑘𝑘𝑘𝑘

𝐵𝐵𝐵𝐵 =  ℎ𝑚𝑚𝐿𝐿
𝐷𝐷eff

� (6)

Where:

v: the drying air velocity (0.5 m/s); 

L: the thickness of drying material; 

k: drying constant determined from the semi-empirical model 
screened based on statistical indicators.

3 RESULTS AND DISCUSSION

3.1 Model fitting

3.1.1 Applying mathematical model

The change in moisture ratio during drying at different 
temperatures is shown in Figure 2. Initially, the moisture content 
of cooked dried rice was 56.6% (on a wet basis). During drying, 
the moisture content of cooked rice decreased, which led to a 
decrease in moisture ratio and time. It could be seen that the 
drying time decreased substantially from 5 to 2.5 h when the 
air temperature increased from 55 to 70 °C. The increased air 
temperature caused the drying procedure to transfer moisture 
faster, which is similar to the research on butterfly pea flowers 
(Thuy et al., 2021), purple sweet potatoes (Thuy et al., 2022a), 
and banana peel (Tai et al., 2021). These authors explained that 
higher temperatures could require greater supply of energy for 
the processing of water movement out of the food matrix.

Figure 1. ANN structure and model in MATLAB application.
Figure 2. Moisture ratio versus drying time at different temperatures 
of cooked “Cẩm” brown rice.



Food Sci. Technol, Campinas, 43, e27623, 20234

Mathematical and artificial neural network modeling of hot air drying kinetics of instant “Cẩm” brown rice

The drying curve obtained from the actual experiment was 
found to be fitted with eight mathematical models (Table 1). 
Thin-layered modeling was successful to predict the moisture 
content and moisture ratio of dried samples. However, the 
fitted model depended on various parameters, including type 
of material, temperature, thickness of the sample, and time of 
the drying process. Generally, the criteria for selecting a fitness 
model are the highest R2 and the lowest RMSE, chi-square, 
or MSE (Arabhosseini et al., 2009). In this current study, the 
model coefficient and the statistical results of eight models are 
presented in Table 2.

From Table 2, it could be seen that the R2 and MSE values 
of eight models ranged from 96.68–99.95% and 0.0080–0.3050, 
respectively, which indicated that all of the models could well 
present the goodness of fit between actual and predicted data. 
Among the tested models, the diffusion approach model was 
the most suitable for expressing the moisture ratio at different 

temperatures with almost the lowest MSE and highest R-square. 
The diffusion approach was also used for describing the drying 
process of pomelo (Yildiz & İzli, 2019) and corn (Hacihafizoğlu 
et al., 2009). Another study on tarragon also showed that the 
diffusion approach model gave the best fit to predict drying 
behavior (Arabhosseini et al., 2009). 

3.1.2 ANN model

The ANN model with two input parameters, time and 
temperature, was employed to make predictions regarding the 
moisture ratio. The statistical findings of training and validation 
are shown in Table 3. As can be seen in this table, the increasing 
number of hidden layers could lead the model to fit more with 
the actual data, which is presented by the increasing correla-
tion coefficient (R2) of the training and testing models. It was 
in line with the study by Selvi et al. (2022) who discovered that 
the networks were vulnerable to the number of neurons in the 

Table 2. Model constant and statistical values of fitting model with actual MR data.
Model name Model coefficient R2 MSE (×10-2)
55 °C

Newton k=0.3871 97.80 0.2202
Henderson and Pabis a=1.0648; k=0.4146 98.53 0.1634
Page k=0.2904; n=1.3014 99.74 0.0221
Logarithmic model a=1.2618; k=0.2825; c=-0.2274 99.39 0.0767
Peleg model a=3.02839; b=0.466859 99.07 0.1037
Two-term a=0.5324; b=0.5324; k=0.4146; k1=0.4146 98.53 0.2101
Diffusion approach a=1.6417; k=0.2181; b=0.2757 99.23 0.0960
Wang and Smith a=-0.3029; b=0.0242 99.44 0.0622

60 °C
Newton k=0.4446 99.31 0.0634
Henderson and Pabis a=1.0177; k=0.4533 99.37 0.0651
Page k=0.4005; n=1.1230 99.50 0.0345
Logarithmic model a=1.1516; k=0.3392; c=-0.1563 99.85 0.0178
Peleg model a=2.3669; b=0.5704 99.82 0.0190
Two-term a=0.5088; b=0.5088; k=0.4533; k1=0.4533 99.37 0.0867
Diffusion approach a=-5.4831; k=0.2137; b=1.1267 99.84 0.0183
Wang and Smith a=-0.356241; b=0.0351741 99.77 0.0229

65 °C
Newton k=0.542917 98.18 0.1745
Henderson and Pabis a=1.0032; k=0.5448 98.18 0.2033
Page k=0.5087; n=1.1000 96.88 0.2113
Logarithmic model a=1.3005; k=0.3230; c=-0.3285 99.24 0.1019
Peleg model a=2.0324; b=0.5234 99.23 0.0862
Two-term a=0.5016; b=0.5016; k=0.5449; k1=0.5449 98.18 0.3050
Diffusion approach a=1.0020; k=0.4928; b=-2.2687 99.27 0.0976
Wang and Smith a=-0.419351; b=0.0462833 98.80 0.1334

70 °C
Newton k=0.9030 99.93 0.0080
Henderson and Pabis a=1.0044; k=0.9070 99.94 0.0095
Page k=0.8960; n=1.0363 99.88 0.0080
Logarithmic model a=1.0197; k=0.8715; c=-0.0178 99.95 0.0099
Peleg model a=1.0103; b=0.6922 99.84 0.0232
Two-term a=0.5022; b=0.5022; k=0.9071; k1=0.9071 99.93 0.0190

Diffusion approach a=1.6229; k=0.7723; b=0.7816 99.95 0.0094
Wang and Smith a=-0.734815; b=0.152421 99.72 0.0405
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deepest layers of their bodies. Therefore, fewer neurons led to 
underfitting, whereas an excessive number of neurons led to 
overfitting, causing an excessive amount of fitting. The training 
datasets were utilized to determine the optimal combination of 
neuronal and hidden layer counts for multi-layered modeling 
using neural networks and to find out which method had the 
most accurate predicting ability. 

The ANN model with 10 hidden layers was elected to be the 
best structure for instant brown rice kinetic modeling with the 
highest R2 and lowest MSE. This structure had 1.000, 0.99454, 
0.999482, and 0.99743 of R for train, validation, test, and overall, 
respectively (Figure 3). 

Recently, various studies used drying conditions and time 
as input data in ANN modeling and prediction of the moisture 
content like the static model in this study (Amini et al., 2021; 
Beigi & Torki, 2021; Chasiotis et  al., 2020; Onu et  al., 2022; 

Figure 3. Regression ANN model of predicted and experimental data for instant “Cẩm” brown rice.

Table 3. Results of the dynamic model using to predict the moisture 
ratio of instant “Cẩm” brown rice.
Number 
of 
hidden 
layer

Training Test

R2 MSE R2 MSE

1 0.9786 0.0036 0.9670 0.0022
2 0.9965 0.0008 0.9794 0.0026
3 0.9968 0.0004 0.9969 0.0016
4 0.9872 0.0022 0.9912 0.0043
5 0.9967 0.0005 0.9921 0.0015
6 0.9838 0.0036 0.9969 0.0018
7 0.997 6.0589×10-5 0.9942 7.5183×10-4

8 0.994 0.001 0.9658 0.0016
9 0.9998 3.6323×10-5 0.995 3.4755×10-4

10 1 0 0.9948 0.0010
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Salehi, 2020). The ANN model was trained using experimental 
data, through the “nntool” of MATLAB. Among the configu-
rations tested, the most satisfactory performances during the 
training phase were achieved with the LM training algorithm 
(TRAINLM) (considering minimum error and less relationship 
complexity) using 10 neurons in the hidden layer, as previously 
discussed (Figure 4). Table 4 shows the weights and biases of 
the optimum network for instant brown rice. 

3.1.3 ANN versus thin-layered mathematical model

Contrary to ANN, which provided a noticeably better fit to 
the experimental data, the chosen mathematical model (diffu-
sion approach) showed lower R2 and greater overall MSE than 
expected for the drying process at 70 °C (Table 5). Following the 
study by Jafari et al. (2016a), trained ANN had superior prediction 
abilities than the tested models regardless of the settings applied. 
Similar findings have been reported for the rapid applications of 
ANN with excellent accuracy in forecasting the drying kinetics 

of several goods, including green bell pepper (Jafari et al., 2016b), 
figs (Şahin & Öztürk, 2018), and button mushrooms (Tarafdar 
et al., 2018). The ANN model also had a nonlinear transfer func-
tion that made it better suited for nonlinear regression predic-
tion, which led to higher R2 and lower MSE values for the ANN 
model compared to the thin-layered model. When nonlinear 
and complicated interactions were applied to the system, ANN 
models performed better (Mavani et al., 2022). As a result, when 
compared to other evaluated models, the ANN technique pro-
duced a prediction of the MR with a higher degree of accuracy. 
It is intriguing to observe that the diffusion approach model was 
able to fiercely compete with the exceptional predicting powers 
of ANN, which may have been possible given the simpler drying 
of the data. Increasing the quantity and intensity of drying factors 
may cause semi-empirical models to go hysterical and necessitate 
the use of ANN. Therefore, the developed dynamic ANN model 
may be used in a predictive control system, which is able to 
estimate the forthcoming responses of the sample when certain 
process control parameters are given.

3.1.4 Effective moisture diffusivity and activation energy

Food products’ effective moisture diffusivity illustrates their 
inherent moisture migration characteristics, which involve a va-
riety of factors like liquid, molecular, vapor, and hydrodynamic 
diffusion (Roman et al., 2020). The estimated values of effective 
diffusivity (Deff) are shown in Table 6 at various temperatures, 
from 4.81×10-11 to 9.35×10-11 (m2/s). When drying temperatures 
increased, the Deff value of instant brown rice also increased. 
This is explained by the increase in the product’s vapor pressure, 
which improved moisture transport at high temperatures (Shi 
et al., 2013). More specifically, the improved water molecule 
activity in the leaves will ultimately boost the heat produced by 
the rise in drying temperature, which will raise the diffusion rate 
(Nadi & Tzempelikos, 2018). The values of Deff obtained from 
this study were within the reported range of moisture diffusivity 
for foodstuffs (10-11 to 10-9 m2/s) (Zogzas et al., 1996).

The values of Bi and hm are also listed in Table 6. The values 
of the Bi number, which ranged from 3.1655 to 5.1272, were 
found to increase as the temperature rose. A similar pattern was 
noted for vacuum-dried apples, which increased in temperature 
from 50 to 70 °C (Nadi & Tzempelikos, 2018). For instant brown 
rice at temperatures between 55 and 70 °C, the mass transfer 

Table 5. Comparative evaluation of ANN and diffusion approach mo-
del for drying process of instant “Cẩm” brown rice.
Model R2 MSE
ANN 0.9973 0.0010
Diffusion approach 0.9923–0.9995 0.0094–0.0976

Table 6. Drying characteristics for instant “Cẩm” brown rice.
Drying 
temperature (°C) k Deff 

(10-11 m2/s) Bi
hm 

(10-9 m/s)
55 0.2181 4.81 3.1898 1.53
60 0.2137 5.13 3.1655 1.63
65 0.4298 6.70 4.1138 2.76
70 0.7732 9.35 5.1272 4.79

Figure 4. Optimum ANN model topology with 10 hidden layer neu-
rons. The topology predicts moisture ratio when supplied with drying 
temperature and drying time as inputs.

Table 4. ANN topology weights and biases for moisture ratio predic-
tion for instant “Cẩm” brown rice.
j w1j w2j bj vj1 bk

1 -2.0126 4.4053 4.9560 0.3451 0.4393
2 -2.0718 -3.6199 2.7849 0.6754 -
3 4.9415 -0.6444 -2.5412 -0.1190 -
4 4.1807 -0.9282 -0.8880 -0.0460 -
5 -5.1298 -0.5503 1.2941 -0.1940 -
6 2.4264 3.9029 1.0102 -0.3936 -
7 2.7731 -1.5227 1.1325 -0.9497 -
8 -4.4029 1.4406 -2.1593 -0.4398 -
9 3.5736 -0.6772 4.1336 -1.0050 -
10 -2.0975 -3.8273 -4.9775 0.5622 -
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coefficient (hm) ranged from 1.53×10-9 to 4.79×10-9 m/s. This 
demonstrates that greater drying temperatures can achieve a 
higher rate of moisture transfer. Higher mass transfer rates 
come from drying at higher temperatures because it increases 
the sample’s available heating energy and increases the activity 
of water molecules (Tarafdar et al., 2021).

A molecule’s ability to start a chemical reaction is typically 
described as its activation energy. The plot of ln(Deff) versus 1/T 
was used to determine Ea for the instant brown rice, and the 
data were satisfactorily fitted by a linear equation (R2=0.925, 
Figure 5). In drying kinetics, the influence of temperature on 
the effective moisture diffusivity is typically modeled using an 
Arrhenius type of equation. It was discovered that the Ea for 
instant brown rice was 42.14 kJ/mol. 

4 CONCLUSION
One key step in the production of instant brown rice is the 

drying process after cooking. The cooked rice was dried at 55, 60, 
65, and 70 °C. The results of experimental studies demonstrated 
that a temperature rise had a considerable impact on the pace of 
drying, which was later demonstrated by a rise in the mass transfer 
parameters. The diffusion approach model was the best at accu-
rately predicting the drying kinetics of instant brown rice out of 
the eight selected models that were examined. When the diffusion 
approach model and ANN were compared, it became clear that 
the trained ANN’s prediction power was greatly matched.
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